[1] 张晓慧. 草莓病害研究进展[J]. 安徽农学通报, 2018, 24(18): 52-57.
Zhang Xiaohui. Research progress of strawberry diseases [J]. Anhui Agricultural Science Bulletin, 2018, 24(18): 52-57.
[2] 陈欣欣, 刘子毅, 吕美巧, 等. 基于热红外成像技术的油菜菌核病早期检测研究[J]. 光谱学与光谱分析, 2019, 39(3): 730-737.
Chen Xinxin, Liu Ziyi, Lü Meiqiao, et al. Diagnosis and monitoring of sclerotinia stem rot of oilseed rape using thermal infrared imaging [J]. Spectroscopy and Spectral Analysis, 2019, 39(3): 730-737.
[3] 康丽, 袁建清, 高睿, 等. 高光谱成像的水稻稻瘟病早期分级检测[J]. 光谱学与光谱分析, 2021, 41(3): 898-902.
Kang Li, Yuan Jianqing, Gao Rui, et al. Early detection and identification of rice blast based on hyperspectral image [J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 898-902.
[4] 宋英, 陈雨欣, 杨俊, 等. 利用数字图像颜色特征指数识别小麦赤霉病[J]. 江苏农业科学, 2022, 50(2): 186-191.
Song Ying, Chen Yuxin, Yang Jun, et al. Recognition of wheat fusarium head blight using digital image color feature index [J]. Jiangsu Agricultural Sciences, 2022, 50(2): 186-191.
[5] Bian Y C, Si X L. Application of new clustering algorithm based on MapReduce in agriculture—A case study on image target recognition of Panonychus citri McGregor [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(9): 166-171.
[6] 朱永宁, 周望, 杨洋, 等. 基于Faster RCNN的枸杞开花期与果实成熟期识别技术[J]. 中国农业气象, 2020, 41(10): 668-677.
Zhu Yongning, Zhou Wang, Yang Yang, et al. Automatic identification technology of Lycium barbarum flowering period and fruit ripening period based on Faster RCNN [J]. Chinese Journal of Agrometeorology, 2020, 41(10): 668-677.
[7] 邱菊, 徐燕. 基于YOLOv5s的草莓病害识别系统设计[J]. 农业技术与装备, 2023(5): 41-42, 45.
Qiu Ju, Xu Yan. Design of strawberry disease identification system based on YOLOv5s [J]. Agricultural Technology & Equipment, 2023(5): 41-42, 45.
[8] Kim B, Han Y K, Park J H, et al. Improved visionbased detection of strawberry diseases using a deep neural network [J]. Frontiers in Plant Science, 2021, 11: 559172.
[9] Ma L, Guo X, Zhao S, et al. Algorithm of strawberry disease recognition based on deep convolutional neural network [J]. Complexity, 2021, 2021: 1-10.
[10] 杨艳杰. 草莓病害及防治[J]. 农民致富之友, 2013(19): 49.
[11] 刘莫尘, 高甜甜, 马宗旭, 等. 基于MSRCRYOLOv4tiny的田间玉米杂草检测模型[J]. 农业机械学报, 2022, 53(2): 246-255, 335.
Liu Mochen, Gao Tiantian, Ma Zongxu, et al. Target detection model of corn weeds in field environment based on MSRCR algorithm and YOLOv4tiny [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 246-255, 335.
[12] 许煊汶. 基于计算机视觉的水稻成熟度快速检测APP的研究[D]. 长春: 吉林大学, 2021.Xu Xuanwen. Research on APP for rapid detection of rice maturity based on computer vision [D]. Changchun: Jilin University, 2021.
[13] 包晓敏, 王思琪. 基于深度学习的目标检测算法综述[J]. 传感器与微系统, 2022, 41(4): 5-9.
Bao Xiaomin, Wang Siqi. Survey of object detection algorithm based on deep learning [J]. Transducer and Microsystem Technologies, 2022, 41(4): 5-9.
[14] 邱天衡, 王玲, 王鹏, 等. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58(13): 63-73.
Qiu Tianheng, Wang Ling, Wang Peng, et al. Research on object detection algorithm based on improved YOLOv5 [J]. Computer Engineering and Applications, 2022, 58(13): 63-73.
[15] 曾广淼, 俞万能, 王荣杰, 等. 船舶目标重叠下马赛克图像数据增强方法研究[J]. 控制理论与应用, 2022, 39(6): 1139-1148.
Zeng Guangmiao, Yu Wanneng, Wang Rongjie, et al. Research on mosaic image data enhancement and detection method for overlapping ship targets [J]. Control Theory & Applications, 2022, 39(6): 1139-1148.
[16] 龙洁花, 郭文忠, 林森, 等. 改进YOLOv4的温室环境下草莓生育期识别方法[J]. 智慧农业(中英文), 2021, 3(4): 99-110.
Long Jiehua, Guo Wenzhong, Lin Sen, et al. Strawberry growth period recognition method under greenhouse environment based on improved YOLOv4 [J]. Smart Agriculture, 2021, 3(4): 99-110.
[17] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[18] 廖冠中, 周嘉灏, 冷鸿杰. 基于改进YOLOv4的水果识别模型研究[J]. 长江信息通信, 2022, 35(5): 44-47.
Liao Guanzhong, Zhou Jiahao, Leng Hongjie. Research on fruit recognition model based on improved YOLOv4 [J]. Changjiang Information & Communications, 2022, 35(5): 44-47.
[19] 张秀花, 静茂凯, 袁永伟, 等. 基于改进YOLOv3-Tiny的番茄苗分级检测[J]. 农业工程学报, 2022, 38(1): 221-229.
Zhang Xiuhua, Jing Maokai, Yuan Yongwei, et al. Tomato seedling classification detection using improved YOLOv3-Tiny [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 221-229.
[20] 赵辉, 乔艳军, 王红君, 等. 基于改进YOLOv3的果园复杂环境下苹果果实识别[J]. 农业工程学报, 2021, 37(16): 127-135.
Zhao Hui, Qiao Yanjun, Wang Hongjun, et al. Apple fruit recognition in complex orchard environment based on improved YOLOv3 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16):127-135.
[21] 张继成, 李德顺. 基于深度残差学习的成熟草莓识别方法[J]. 中国农机化学报, 2022, 43(2): 136-142.
Zhang Jicheng, Li Deshun. Ripe strawberry recognition method based on deep residual learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2): 136-142.
[22] 顾宝兴, 刘钦, 田光兆, 等. 基于改进YOLOv3的果树树干识别和定位[J]. 农业工程学报, 2022, 38(6): 122-129.
Gu Baoxing, Liu Qin, Tian Guangzhao, et al. Recognizing and locating the trunk of a fruit tree using improved YOLOv3 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6):122-129.
|