[1] 疏雅丽, 张国伟, 王博, 等. 基于深层连接注意力机制的田间杂草识别方法[J]. 计算机工程与应用, 2022, 58(6): 271-277.
Shu Yali, Zhang Guowei, Wang Bo, et al. Field weed identification method based on deep connection attention mechanism[J]. Computer Engineering and Applications, 2022, 58(6): 271-277.
[2] Bruna J, Sprechmann P, Lecun Y. Superresolution with deep convolutional sufficient statistics[EB/OL].International Conference on Learning Representations, https://arXiv.org./abs/1511.05666, 2019-07-12.
[3] Dong C, Loy C C, He K, et al. Learning a deep convolutional network for image superresolution [C]. Computer VisionECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13. Springer International Publishing, 2014: 184-199.
[4] Shi W, Caballero J, Huszár F, et al. Realtime single image and video superresolution using an efficient subpixel convolutional neural network [C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 1874-1883.
[5] Kim J, Lee J K, Lee K M. Accurate image superresolution using very deep convolutional networks [C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 1646-1654.
[6] Luo Z, Yu J, Liu Z. The superresolution reconstruction of SAR image based on the improved FSRCNN [J]. The Journal of Engineering, 2019(19): 5975-5978.
[7] 冯子勇. 基于深度学习的图像特征学习和分类方法的研究及应用[D]. 广州: 华南理工大学,2016.
Feng Ziyong. Research and application of image feature learning and classification methods based on deep learning[D]. Guangzhou: South China University of Technology, 2016.
[8] Goodfellow I J, PougetAbadie J, Mirza M, et al. Generative adversarial nets [C]. International Conference on Neural Information Processing Systems, MIT Press, 2014: 2672-2680.
[9] 夏皓, 吕宏峰, 罗军, 等. 图像超分辨率深度学习研究及应用进展[J]. 计算机工程与应用, 2021, 57(24): 51-60.
Xia Hao, Lü Hongfeng, Luo Jun, et al. Survey on deep learning based image superresolution[J]. Computer Engineering and Applications, 2021, 57(24): 51-60.
[10] Mirza M, Osindero S. Conditional generative adversarial nets [J]. CoRR, 2014, abs/1411.1784.
[11] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks [J]. Under review as a conference paper at ICLR 2016.
[12] Ledig C, Theis L, Huszár F, et al. Photorealistic single image superresolution using a generative adversarial network [C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4681-4690.
[13] Wang X, Yu K, Wu S, et al. ESRGAN: Enhanced superresolution generative adversarial networks [C]. Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 63-79.
[14] 贺温磊, 王朝立, 孙占全. 基于生成对抗网络的遥感图像超分辨率重建[J]. 信息与控制, 2021, 50(2): 195-203.
He Wenlei, Wang Chaoli, Sun Zhanquan. Superresolution reconstruction of satellite imagery based on generative adversarial network [J]. Information and Control, 2021, 50(2): 195-203.
[15] Jiang K, Wang Z, Yi P, et al. GANbased multilevel mapping network for satellite imagery superresolution [C]. IEEE International Conference on Multimedia and Expo, Piscataway, NJ, USA: IEEE, 2019: 526-531.
[16] Tampubolon H, Setyoko A, Purnamasari F. SNPESRGAN: Lightweight generative adversarial networks for singleimage superresolution on mobile using SNPE framework [J]. Journal of Physics: Conference Series, 2021, 1898(1): 012038(8PP).
[17] Yang Z, Wang Y. Image enhancement and improvement algorithm based on organ signal frame remote sensing image [J]. Journal of Physics: Conference Series, 2021, 1952(2): 022012.
[18] 丁玲, 丁世飞, 张健, 等. 使用VGG能量损失的单图像超分辨率重建[J]. 软件学报, 2021, 32(11): 3659-3668.
Ding Ling, Ding Shifei, Zhang Jian, et al. Single image superresolution reconstruction based on VGG energy loss[J]. Journal of Software, 2021, 32(11): 3659-3668.
[19] Zhao B, Liu Z, Ding S, et al. Motion artifact correction for MR images based on convolutional neural network [J]. Optoelectronics Letters, 2022, 18(1): 54-58.
[20] 高敏娟. 图像质量评价算法研究及其在印刷品质量评价中的应用[D]. 西安: 陕西科技大学, 2021.
Gao Minjuan. Study on image quality assessment algorithm and its application in printing quality evaluation [D]. Xian: Shanxi University of Science and Technology, 2021.
|