[1]
王利民, 刘佳, 姚保民, 等. 基于GF-1影像NDVI年度间相关分析的冬小麦面积变化监测[J]. 农业工程学报, 2018, 34(8): 184-191.
Wang Limin, Liu Jia, Yao Baomin, et al. Area change monitoring of winter wheat based on relationship analysis of GF-1 NDVI among different years [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8): 184-191.
[2]
王冬利, 张安兵, 赵安周, 等. 非监督分类的冬小麦种植信息提取模型[J]. 测绘通报, 2019(8): 68-71, 77.
Wang Dongli, Zhang Anbing, Zhao Anzhou, et al. Extraction model of winter wheat planting information based on unsupervised classification [J]. Bulletin of Surveying and Mapping, 2019(8): 68-71, 77.
[3]
Zhang J, Feng L, Yao F. Improved maize cultivated area estimation over a large scale combining MODISEVI time series data and crop phenological information [J]. Isprs Journal of Photogrammetry & Remote Sensing, 2014, 94(aug.): 102-113.
[4]
陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5): 748-767.
Chen Zhongxin, Ren Jianqiang, Tang Huajun, et al. Progress and perspectives on agricultural remote sensing research and applications in China [J]. Journal of Remote Sensing, 2016, 20(5): 748-767
[5]
史舟, 梁宗正, 杨媛媛, 等. 农业遥感研究现状与展望[J]. 农业机械学报, 2015, 46(2): 247-260.
Shi Zhou, Liang Zongzheng, Yang Yuanyuan, et al. Status and prospect of agricultural remote sensing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 247-260.
[6]
金永涛, 杨秀峰, 高涛, 等. 基于面向对象与深度学习的典型地物提取[J]. 国土资源遥感, 2018, 30(1): 22-29.
Jin Yongtao, Yang Xiufeng, Gao tao, et al. The typical object extraction method based on objectoriented and deep learning [J]. Remote Sensing for Land and Resources, 2018, 30(1): 22-29.
[7]
白宇. 基于深度学习的遥感图像林地识别技术的研究与应用[D]. 北京: 北京邮电大学, 2019.
[8]
陈燕生, 赵丽娜, 吴亚娟, 等. 改进U-Net的小宗作物遥感图像分割研究[J]. 科学技术创新, 2021(14): 11-14.
[9]
Rezaee M, Mahdianpari M, Zhang Y, et al. Deep convolutional neural network for complex wetland classification using optical remote sensing imagery [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018(9): 1-10.
[10]
DuarteCarvajalino J, D Alzate, Ramirez A, et al. Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms [J]. Remote Sensing, 2018, 10(10): 1513.
[11]
李明洁, 王明常, 王凤艳, 等. 多特征随机森林的城市土地利用分类[J/OL]. 测绘科学: 1-8[2022-05-10]. http://kns.cnki.net/kcms/detail/11.4415.P.20210923.0819.004.html.
[12]
何茹. 一种面向对象的水体变化检测方法研究[J]. 南方国土资源, 2019(1): 39-43, 47.
[13]
李丹, 梅晓丹, 赵鹤, 等. GF-1与Landsat-8影像土地利用遥感解译对比分析[J]. 测绘工程, 2018, 27(10): 42-45.
Li Dan, Mei Xiaodan, Zhao He, et al. Comparative analysis of GF-1 and Landsat-8 image land use remote sensing interpretation [J]. Engineering of Surveying and Mapping, 2018, 27(10): 42-45.
[14]
张森, 陈健飞, 龚建周. 面向对象分类的决策树方法探讨——以Landsat-8OLI为例[J]. 测绘科学, 2016, 41(6): 117-121, 125.
Zhang Sen, Chen Jianfei, Gong Jianzhou. Objectoriented classification based on C5.0 algorithm [J]. Science of Surveying and Mapping, 2016, 41(6): 117-121, 125.
[15]
张殿岱, 王雪梅. 基于高分辨率遥感影像的植被分类方法比较[J]. 林业资源管理, 2021(3): 108-113.
Zhang Dianyue, Wang Xuemei. Comparison of vegetation classification methods based on high resolution remote sensing image [J]. Forest Resources Management, 2021(3): 108-113.
[16]
蒋治浩, 林辉, 张怀清, 等. 面向对象结合卷积神经网络的GF-1影像遥感分类[J]. 中南林业科技大学学报, 2021, 41(8): 45-55, 67.
Jiang Zhihao, Lin Hui, Zhang Huaiqing, et al. Remote sensing image of GF-1 classification using objectoriented method and convolutional neural network [J]. Journal of Central South University of Forestry & Technology, 2021, 41(8): 45-55, 67.
[17]
郭绿奕, 戴韫卓, 杜震洪, 等. 第二次全国土地调查成果现势性评估方法[J]. 浙江大学学报(理学版), 2016, 43(1): 35-39.
Guo Lüyi, Dai Yunzhuo, Du Zhenhong, et al. Data currency evaluation method of the second national land survey [J]. Journal of Zhenjiang University(Science Edition), 2016, 43(1): 35-39.
[18]
宋茜. 基于GF-1/WFV和面向对象的农作物种植结构提取方法研究[D]. 北京: 中国农业科学院, 2016.
[19]
Belgiu, Dragut. Random forest in remote sensing: A review of applications and future directions [J]. Isprs J Photogramm, 2016, 114: 24-31.
[20]
Pelletier C, Valero S, Inglada J, et al. Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas [J]. Remote Sensing of Environment, 2016, 187: 156-168.
[21]
Pengyu Hao, Yulin, et al. Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA[J]. Remote Sensing, 2015..
[22]
Charalampous K, Kostavelis I, Amanatiadis A, et al. Sparse deeplearning algorithm for recognition and categorization [J]. Electronics Letters, 2012, 48(20): 1265-1266.
[23]
崔永想. 基于深度学习的干旱区荒漠化遥感动态监测及驱动机制研究[D]. 石河子: 石河子大学, 2020.
|