[1] 王金峰, 闫东伟, 鞠金艳, 等. 基于经验模态分解与BP神经网络的农机总动力增长预测[J]. 农业工程学报, 2017, 33(10): 116-122.
Wang Jinfeng, Yan Dongwei, Ju Jinyan, et al. Prediction of total power growth of agricultural machinery based on empirical mode decomposition and BP neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 116-122.
[2] 张睿, 高焕文. 基于灰色GM(1,1)的农业机械化水平预测模型[J]. 农业机械学报, 2009, 40(2): 91-95.
Zhang Rui, Gao Huanwen. Prediction model of agricultural mechanization level in China based on GM(1,1) [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(2): 91-95.
[3] 白丽, 李行, 马成林. 2005—2015年吉林省农机化作业水平定量预测[J]. 农业机械学报, 2005, 36(9): 64-67.
Bai Li, Li Hang, Ma Chenglin. Quantificational forecast of farm mechanization level in Jilin Province from year 2005 to 2015 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(9): 64-67.
[4] Huang Zhanghua, Lu Huazhong, Yang Jingfeng, et al. Application of a combination forecasting model in predicting the agricultural mechanization level in China [J]. Revista de la Facultad de Ingenieria, 2017, 32(4): 163-171.
[5] 陈宝峰, 白人朴, 刘广利. 影响山西省农机化水平的多因素逐步回归分析[J]. 中国农业大学学报, 2005, 10(4): 115-118.
Chen Baofeng, Bai Renpu, Liu Guangli. Stepwise regression analysis on the influencing factors of Shanxi agriculture mechanization level [J]. Journal of China Agricultural University, 2005, 10(4): 115-118.
[6] 张平, 潘学萍, 薛文超. 基于小波分解模糊灰色聚类和BP神经网络的短期负荷预测[J]. 电力自动化设备, 2012, 32(11): 121-125.
Zhang Ping, Pan Xueping, Xue Wenchao. Shortterm load forecasting based on wavelet decomposition, fuzzy gray correlation clustering and BP neural network [J]. Electric Power Automation Equipment, 2012, 32(11): 121-125.
[7] Nourani V, Baghanam A H, Adamowski J, et al. Applications of hybrid waveletartificial intelligence models in hydrology: A review [J]. Journal of Hydrology, 2014, 514: 358-377.
[8] 陈亚玲, 赵智杰. 基于小波变换与传统时间序列模型的臭氧浓度多步预测[J]. 环境科学学报, 2013, 33(2): 339-345.
Chen Yaling, Zhao Zhijie. A multistepahead prediction of ozone concentration using wavelet transform and traditional time series model [J]. Acta Scientiae Circumstantiae, 2013, 33(2): 339-345.
[9] Alizadeh M J, Kavianpour M R. Development of waveletANN models to predict water quality parameters in Hilo Bay, Pacific Ocean [J]. Marine Pollution Bulletin, 2015, 98(1-2): 171-178.
[10] 骆健民, 郑文钟, 何勇. 浙江省农业机械化发展水平评价[J]. 浙江大学学报(农业与生命科学版), 2007, 33(2): 217-221.
Luo Jianmin, Zheng Wenzhong, He Yong. Study on assessment method of development level of mechanization farming and application in Zhejiang [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2007, 33(2): 217-221.
[11] 郑文钟, 何勇, 岑益郎. 基于粗糙集和模糊聚类的农机化水平评价方法[J]. 农业机械学报, 2006, 37(2): 58-61.
Zheng Wenzhong, He Yong, Cen Yilang. Study on evaluation methods for agricultural mechanization developing level based on rough set theory and fuzzy aggregation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(2): 58-61.
[12] 鞠金艳, 赵林, 王金峰. 农机总动力增长波动影响因素分析[J]. 农业工程学报, 2016, 32(2): 84-91.
Ju Jinyan, Zhao Lin, Wang Jinfeng. Fluctuations influence factors analysis of growth of agricultural machinery total power [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 84-91.
[13] Zhou L, Ma W, Zhang H, et al. Developing a PCA-ANN model for predicting chlorophyll a concentration from field hyperspectral measurements in Dianshan Lake, China [J]. Water Quality Exposure & Health, 2015, 7(4): 1-12.
[14] 高新华, 严正. 基于主成分聚类分析的智能电网建设综合评价[J]. 电网技术, 2013, 37(8): 2238-2243.
Gao Xinhua, Yan Zheng. Comprehensive assessment of smart grid construction based on principal component analysis and cluster analysis [J]. Power System Technology, 2013, 37(8): 2238-2243.
[15] Yousefi F, Mohammadiyan S, Karimi H. Application of artificial neural network and PCA to predict the thermal conductivities of nanofluids [J]. Heat and Mass Transfer, 2016, 52: 2141-2154.
[16] Yousefi F, Amoozandeh Z. A new model to predict the densities of nanofluids using statistical mechanics and artificial intelligent plus principal component analysis [J]. Chinese Journal of Chemical Engineering, 2017, 25(9): 1273-1281.
[17] 员玉良, 盛文溢. 基于主成分回归的茎直径动态变化预测方法[J]. 农业机械学报, 2015, 46(1): 307-314.
Yuan Yuliang, Sheng Wenyi. Prediction of stem diameter variations based on principal component regression [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 307-314.
[18] 张淑清, 任爽, 师荣艳, 等. 基于多变量气象因子的LMBP电力日负荷预测[J]. 仪器仪表学报, 2015, 36(7): 1646-1652.
Zhang Shuqing, Ren Shuang, Shi Rongyan, et al. Multiple weather factorsbased LMBP method for daily power load forecasting [J]. Chinese Journal of Scientific Instrument, 2015, 36(7): 1646-1652.
[19] 王丽婕, 冬雷, 廖晓钟, 等. 基于小波分析的风电场短期发电功率预测[J]. 中国电机工程学报, 2009, 29(28): 30-33.
Wang Lijie, Dong Lei, Liao Xiaozhong, et al. Shortterm power prediction of a wind farm based on wavelet analysis [J]. Proceedings of the CSEE, 2009, 29(28): 30-33.
[20] 吴琛, 周瑞忠. 高速公路软基加固质量的瑞利波检测与小波分析技术[J]. 岩土力学, 2004, 25(S2): 181-186.
Wu Chen, Zhou Ruizhong. Rayleigh wave measurement and wavelet analysis for strengthening soft foundation of freeway [J]. Rock and Soil Mechanics, 2004, 25(S2): 181-186.
[21] Kuang Y, Singh R, Singh S, et al. A novel macroeconomic forecasting model based on revised multimedia assisted BP neural network model and ant Colony algorithm [J]. Multimedia Tools & Applications, 2017, 76(18): 18749-18770.
[22] Yu X, Han J, Shi L, et al. Application of a BP neural network in predicting destroyed floor depth caused by underground pressure [J]. Environmental Earth Sciences, 2017, 76(15): 535.
[23] Zhang Na, Ma Yuteng, Zhang Qinghe. Prediction of sea ice evolution in Liaodong Bay based on a backpropagation neural network model [J]. Cold Regions Science and Technology, 2017, 145: 65-75.
[24] 曹净, 丁文云, 赵党书, 等. 基于LSSVMARMA模型的基坑变形时间序列预测[J]. 岩土力学, 2014, 35(S2): 579-586.
Cao Jing, Ding Wenyun, Zhao Dangshu, et al. Time series forecast of foundation pit deformation based on LSSVMARMA model [J]. Rock and Soil Mechanics, 2014, 35(S2): 579-586.
[25] 魏永涛, 汪晋宽, 王翠荣, 等. 基于小波变换与组合模型的网络流量预测算法[J]. 东北大学学报(自然科学版), 2011, 32(10): 1382-1385.
Wei Yongtao, Wang Jinkuan, Wang Cuirong, et al. Network traffic prediction algorithm based on wavelet transform and combined model [J]. Journal of Northeastern University, 2011, 32(10): 1382-1385.
[26] 鞠金艳, 王金武, 王金峰. 基于BP神经网络的农机总动力组合预测方法[J]. 农业机械学报, 2010, 41(6): 87-92.
Ju Jinyan, Wang Jinwu, Wang Jinfeng. Combined prediction method of total power of agricultural machinery based on BP neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(6): 87-92.
|