[1] Taki M, Ajabshirchi Y, Ranjbar S F, et al. Heat transfer and MLP neural network models to predict inside environment variables and energy lost in a semisolar greenhouse [J]. Energy and Buildings, 2016, 110: 314-329.
[2] 周伟, 李永博, 汪小旵. 基于CFD非稳态模型的温室温度预测控制[J]. 农业机械学报, 2014, 45(12): 335-340.
Zhou Wei, Li Yongbo, Wang Xiaochan. Model predictive control of air temperature in greenhouse based on CFD unsteady model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 335-340.
[3] Saberian A, Sajadiye S M. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation [J]. Renewable Energy, 2019, 138: 722-737.
[4] 左志宇, 毛罕平, 张晓东, 等. 基于时序分析法的温室温度预测模型[J]. 农业机械学报, 2010, 41(11): 173-177.
Zuo Zhiyu, Mao Hanping, Zhang Xiaodong, et al. Forecast model of greenhouse temperature based on time series method [J]. Transaction of the Chinese Society for Agricultural Machinery, 2010, 41(11): 173-177.
[5] 邹秋滢, 纪建伟, 李征明. 基于ANFIS的温室小气候环境因子预测模型辨识[J]. 沈阳农业大学学报, 2014, 45(4): 503-507.
Zou Qiuying, Ji Jianwei, Li Zhengming. Identification of greenhouse microclimate environment factors prediction model based on ANFIS [J]. Journal of Shengyang Agricultural University, 2014, 45(4): 503-507.
[6] 徐宇, 冀荣华. 基于复数神经网络的智能温室温度预测研究[J]. 中国农机化学报, 2019, 40(4): 174-178.
Xu Yu, Ji Ronghua. Research on temperature prediction of intelligent greenhouse based on complex neural network [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 174-178.
[7] 陈昕, 唐湘璐, 李想, 等. 二次聚类与神经网络结合的日光温室温度二步预测方法[J]. 农业机械学报, 2017, 48(S1): 353-358.
Chen Xin, Tang Xianglu, Li Xiang, et al. Twosteps prediction method of temperature in solar greenhouse based on twice cluster analysis and neural network [J]. Transaction of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 353-358.
[8] Yu H, Chen Y, Hassan S G, et al. Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO [J]. Computers and Electronics in Agriculture, 2016, 122: 94-102.
[9] 任守纲, 刘鑫, 顾兴健, 等. 基于R-BP神经网络的温室小气候多步滚动预测模型[J]. 中国农业气象, 2018, 39(5): 314-324.
Ren Shougang, Liu Xin, Gu Xingjian, et al. Multistep rolling prediction model of greenhouse microclimate based on R-BP neural network [J]. Chinese Journal of Agrometeorology, 2018, 39(5): 314-324.
[10] 田东, 韦鑫化, 王悦, 等. 基于MA-ARIMA-GASVR的食用菌温室温度预测[J]. 农业工程学报, 2020, 36(3): 190-197.
Tian Dong, Wei Xinhua, Wang Yue, et al. Prediction of temperature in edible fungi greenhouse based on MA-ARIMA-GASVR [J]. Transaction of the Chinese Society of Agricultural Engineering, 2020, 36(3): 190-197.
[11] Jung D H, Kim H S, Jhin C, et al. Timeserial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse [J]. Computers and Electronics in Agriculture, 2020, 173: 105402.
[12] 张坤鳌, 赵凯. 基于改进CFA PSO-RBF神经网络的温室温度预测研究[J]. 计算机应用与软件, 2021, 37(6): 95-99, 107.
Zhang Kunao, Zhao Kai. Greenhouse temperature prediction based on improved CFA PSO-RBF neural network [J]. Computer Application and Software, 2021, 37(6): 95-99, 107.
[13] 胡瑾, 雷文晔, 卢有琦, 等. 基于1D CNN-GRU的日光温室温度预测模型研究[J]. 农业机械学报, 2023, 54(8): 339-346.
Hu Jin, Lei Wenye, Lu Youqi, et al. Research on temperature prediction model for solar greenhouses based on 1D CNN-GRU [J]. Transaction of the Chinese Society for Agricultural Machinery, 2023, 54(8): 339-346.
[14] Cai W, Wei R, Xu L, et al. A method for modelling greenhouse temperature using gradient boost decision tree [J]. Information Processing in Agriculture, 2022, 9(3): 343-354.
[15] Liu Y, Li D, Wan S, et al. A long shortterm memorybased model for greenhouse climate prediction [J]. International Journal of Intelligent Systems, 2021(7): 135-151.
[16] 张龙, 贾兰芳. 基于遗传算法优化模糊神经网络的温室温度预测模型[J]. 山西大同大学学报(自然科学版), 2021, 37(3): 15-17.
Zhang Long, Jia Lanfang. Greenhouse temperature prediction model based on genetic algorithm optimized fuzzy neural network [J]. Journal of Shanxi Datong University (Natural Science Edition), 2021, 37(3): 15-17.
[17] Li S, Chen H, Wang M, et al. Slime mould algorithm: A new method for stochastic optimization [J]. Future Generation Computer Systems, 2020, 111(12): 300-323.
|