English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (6): 106-112.DOI: 10.13733/j.jcam.issn.2095-5553.2025.06.016

• 农业信息化工程 • 上一篇    下一篇

基于支持向量回归的陵城区冬小麦关键物候期预测

宫翱1,2,张艳1,2,柳平增1,2   

  1. (1. 山东农业大学信息科学与工程学院,山东泰安,271018; 2. 农业农村部黄淮海智慧农业技术重点实验室,山东泰安,271018)
  • 出版日期:2025-06-15 发布日期:2025-05-22
  • 基金资助:
    山东省重大科技创新工程项目(2019JZZY010713)

Key phenological period prediction of winter wheat in Lingcheng District based on support vector regression

Gong Ao1, 2, Zhang Yan1, 2, Liu Pingzeng1, 2   

  1. (1. School of Information Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; 2. Key Laboratory of Intelligent Agriculture Technology of the Huang‑Huai‑Hai Region, Ministry of Agriculture and Rural Affairs, Tai'an, 271018, China)
  • Online:2025-06-15 Published:2025-05-22

摘要:

为探究环境变化对冬小麦物候期的影响,构建冬小麦关键物候期预测模型。选取温度、光照时数、降雨量等环境因子进行研究,通过散点图阵、正态分布检验以及Pearson相关性分析,探究数据的特点。并选用多元线性回归建立模型,但受数据量较少以及自变量之间的多重共线性影响,导致部分系数参数估计结果未通过检验等问题。因此,使用方差膨胀因子检验数据的多重共线性,并选取5种模型进行对比预测。通过对比5种模型预测结果,选用主成分分析结合支持向量回归来构建物候期预测模型。结果显示,各个物候期预测模型验证结果均方根误差均小于1,决定系数均大于90%,预测结果良好。预测模型不仅探究环境因子对物候期的影响,还为农业生产优化、资源调配和风险管理、农业气候适宜性研究以及科学研究与决策支持提供参考。

关键词: 冬小麦, 物候期预测, 支持向量回归, 主成分分析

Abstract:

To investigate the impact of environmental changes on the phenological stages of winter wheat, a predictive model for key phenological periods was developed. Environmental factors such as temperature, light hours, and rainfall were selected for analysis. Data characteristics were examined using scatter plots, normal distribution tests, and Pearson correlation analysis. Initial modelling was performed using multiple linear regression. However, due to the limited dataset and multicollinearity among independent variables, some parameter estimates failed significance tests. Therefore, the variance inflation factor (VIF) was employed to test the multicollinearity of the data, and six predictive models were tested for comparative evaluation. Among these, a model combining principal component analysis (PCA)with support vector regression (SVR) was identified as the most effective for phenological prediction. The results showed that the root mean square error (RMSE) for the verification of all phenological prediction models was below 1, with determination coefficients exceeding 90%, thereby demonstrating high predictive accuracy. This predictive model not only elucidates the influence of environmental factors on winter wheat phenology, but also  serves as a valuable tool for optimizing agricultural production, resource allocation, and risk management. Furthermore, it provides insights for agricultural climate suitability studies, scientific research and informed decision‑making in the agricultural sector.

Key words: winter wheat, phenological period prediction, support vector regression, principal component analysis

中图分类号: