[1] 任佳佳, 张朦朦, 李巍. 我国苹果区域分布特征及其供需优化分析[J]. 中国果树, 2023(5): 123-126.
Ren Jiajia, Zhang Mengmeng, Li Wei. Analysis on the regional distribution characteristics and supply and demand optimization of apple in China [J]. China Fruits, 2023(5): 123-126.
[2] Khan A I, Quadri S M K, Banday S, et al. Deep diagnosis: A realtime apple leaf disease detection system based on deep learning [J]. Computers and Electronics in Agriculture, 2022, 198: 107093.
[3] 陈聪, 于啸, 宫琪. 基于改进残差网络的苹果叶片病害识别研究[J]. 河南农业科学, 2023, 52(4): 152-161.
Chen Cong, Yu Xiao, Gong Qi. Apple leaf diseases identification based on improved residual network [J]. Journal of Henan Agricultural Sciences, 2023, 52(4): 152-161.
[4] 夏小雨, 韩成浩. 基于无人机的低空图像处理技术在农业领域的应用[J]. 农业与技术, 2023, 43(1): 38-41.
[5] 陈超, 齐峰. 卷积神经网络的发展及其在计算机视觉领域中的应用综述[J]. 计算机科学, 2019, 46(3): 63-73.
Chen Chao, Qi Feng. Review on development of convolutional neural network and its application in computer vision [J]. Computer Science, 2019, 46(3): 63-73.
[6] 刘颖, 雷研博, 范九伦, 等. 基于小样本学习的图像分类技术综述[J]. 自动化学报, 2021, 47(2): 297-315.
Liu Ying, Lei Yanbo, Fan Jiulun, et al. Survey on image classification technology based on small sample learning [J]. Acta Automatica Sinica, 2021, 47(2): 297-315.
[7] Dubey S R, Jalal A S. Detection and classification of apple fruit diseases using complete local binary patterns [C]. 2012 Third International Conference on Computer and Communication Technology. IEEE, 2012: 346-351.
[8] Chakraborty S, Paul S, RahatuzZaman M. Prediction of apple leaf diseases using multiclass support vector machine [C]. 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST). IEEE, 2021: 147-151.
[9] Zhang Chuanlei, Zhang Shanwen, Yang Jucheng, et al. Apple leaf disease identification using genetic algorithm and correlation based feature selection method [J]. International Journal of Agricultural and Biological Engineering, 2017, 10(2): 74-83.
[10] Khan M A, Lali M I U, Sharif M, et al. An optimized method for segmentation and classification of apple diseases based on strong correlation and genetic algorithm based feature selection [J]. IEEE Access, 2019, 7: 46261-46277.
[11] Jiang P, Chen Y, Liu B, et al. Realtime detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks [J]. IEEE Access, 2019, 7: 59069-59080.
[12] 赵嘉威, 田光兆, 邱畅, 等. 基于改进YOLOv4算法的苹果叶片病害检测方法[J]. 江苏农业科学, 2023, 51(9): 193-199.
Zhao Jiawei, Tian Guangzhao, Qiu Chang, et al. Detection method of apple leaf diseases based on improved YOLOv4 algorithm [J]. Jiangsu Agricultural Sciences, 2023, 51(9): 193-199.
[13] 曾晏林, 贺壹婷, 蔺瑶, 等. 基于BCE-YOLOv5的苹果叶部病害检测方法[J]. 江苏农业科学, 2023, 51(15): 155-163.
Zeng Yanlin, He Yiting, Lin Yao, et al. An apple leaf disease detection method based on BCE-YOLOv5 [J]. Jiangsu Agricultural Sciences, 2023, 51(15): 155-163.
[14] 王云露, 吴杰芳, 兰鹏, 等. 基于改进Faster R-CNN的苹果叶部病害识别方法[J]. 林业工程学报, 2022, 7(1): 153-159.
Wang Yunlu, Wu Jiefang, Lan Peng, et al. Apple disease identification using improved Faster R-CNN [J].Journal of Forestry Engineering, 2022, 7(1): 153-159.
[15] 金鑫, 庄建军, 徐子恒. 轻量化YOLOv5s网络车底危险物识别算法[J]. 浙江大学学报(工学版), 2023, 57(8): 1516-1526.
Jin Xin, Zhuang Jianjun, Xu Ziheng. Lightweight YOLOv5s networkbased algorithm for identifying hazardous objects under vehicles [J]. Journal of Zhejiang University (Engineering Science), 2023, 57(8): 1516-1526.
[16] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[17] Liu G, Hu Y, Chen Z, et al. Lightweight object detection algorithm for robots with improved YOLOv5 [J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106217.
[18] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[19] Yang L, Zhang R Y, Li L, et al. SimAM: A simple, parameterfree attention module for convolutional neural networks [C]. International Conference on Machine Learning. PMLR, 2021: 11863-11874.
|