[1]
刘凤之, 王海波, 胡成志. 我国主要果树产业现状及“十四五”发展对策[J]. 中国果树, 2021(1): 1-5.
Liu Fengzhi, Wang Haibo, Hu Chengzhi. Current situation of main fruit tree industry in China and its development countermeasure during the “14th fiveyear plan” period [J]. China Fruits, 2021(1): 1-5.
[2]
郭文武, 叶俊丽, 邓秀新. 新中国果树科学研究70年——柑橘[J]. 果树学报, 2019, 36(10): 1264-1272.
Guo Wenwu, Ye Junli, Deng Xiuxin. Fruit scientific research in New China in the past 70 years: Citrus [J]. Journal of Fruit Science, 2019, 36(10): 1264-1272.
[3]
丁文雁, 袁斌, 周应恒. 中国水果产业增长模式及趋势分析——以柑橘为例[J]. 世界农业, 2017(12): 148-155, 259-260.
Ding Wenyan, Yuan Bin, Zhou Yingheng. Analysis on growth pattern and trend of fruit industry in China: Take citrus for example [J]. World Agriculture, 2017(12): 148-155, 259-260.
[4]
林正雨, 陈强, 邓良基, 等. 中国柑橘生产空间变迁及其驱动因素[J]. 热带地理, 2021, 41(2): 374-387.
Lin Zhengyu, Chen Qiang, Deng Liangji, et al. Spatial pattern changes and driving factors of citrus production in China [J]. Tropical Geography, 2021, 41(2): 374-387.
[5]
〖JP3〗张强强, 司瑞石, 施凡基, 等. 中国水果生产集中化水平的演进趋势[J]. 中国农业资源与区划, 2021, 42(2): 96-108.
Zhang Qiangqiang, Si Ruishi, Shi Fanji, et al. The evolution trend of Chinese fruit production concentration level [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(2): 96-108.
[6]
王刘坤, 祁春节. 中国柑橘主产区的区域比较优势及其影响因素研究——基于省级面板数据的实证分析[J]. 中国农业资源与区划, 2018, 39(11): 121-128.
Wang Liukun, Qi Chunjie. Research on the comparative advantage and its influencing factors of in Chinese citrus main producing region: Empirical analysis based on interprovincial panel data [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(11): 121-128.
[7]
徐晗泽宇. 赣南柑橘果园扩张及其对景观影响的遥感研究[D]. 南昌: 江西师范大学, 2018.
Xu Hanzeyu. Study on the expansion of citrus orchard in gannan region and its influence on landscape characteristics with timeseries landsat images [D]. Nanchang: Jiangxi Normal University, 2018.
[8]
李发林, 曾瑞琴, 危天进, 等. 福建省平和县琯溪蜜柚果园土壤磷环境风险评价研究[J]. 中国生态农业学报, 2015, 23(8): 1001-1009.
Li Falin, Zeng Ruiqin, Wei Tianjin, et al. Risk assessment in soil phosphorus environment of Guanxi pummelo orchard in Pinghe County, Fujian Province [J]. Chinese Journal of EcoAgriculture, 2015, 23(8): 1001-1009.
[9]
〖JP3〗史舟, 管彦良, 王援高, 等. 遥感与GIS技术支持下的黄岩区柑橘种植结构调整[J]. 经济地理, 2002, 22(6): 727-730.
Shi Zhou, Guan Yanliang, Wang Yuangao, et al. Adjustment of citrus planting structure supported by the integrated remote sensing and GIS [J]. Economic Geography, 2002, 22(6): 727-730.
[10]
徐晗泽宇, 刘冲, 王军邦, 等. Google Earth Engine平台支持下的赣南柑橘果园遥感提取研究[J]. 地球信息科学学报, 2018, 20(3): 396-404.
Xu Hanzeyu, Liu Chong, Wang Junbang, et al. Study on extraction of citrus orchard in gannan region based on Google Earth Engine platform [J]. Journal of Geoinformation Science, 2018, 20(3): 396-404.
[11]
〖JP3〗梁晨欣, 黄启厅, 王思, 等. 基于多时相遥感植被指数的柑橘果园识别[J]. 农业工程学报, 2021, 37(24): 168-176.
Liang Chenxin, Huang Qiting, Wang Si, et al. Identification of citrus orchard under vegetation indexes using multitemporal remote sensing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(24): 168-176.
[12]
祁媛, 徐伟诚, 王林琳, 等. 基于无人机遥感影像的沙糖橘果树提取方法研究[J]. 华南农业大学学报, 2020, 41(6): 126-133.
Qi Yuan, Xu Weicheng, Wang Linlin, et al. Study on the extraction method of sugar tangerine fruit trees based on UAV remote sensing images [J]. Journal of South China Agricultural University, 2020, 41(6): 126-133.
[13]
蒋怡, 李宗南, 任国业, 等. 基于GF-1 PMS影像的柠檬种植面积估算[J]. 中国农业资源与区划, 2016, 37(11): 50-55.
Jiang Yi, Li Zongnan, Ren Guoye, et al. Estimation of lemon planted area based on GF-1 PMS image [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(11): 50-55.
[14]
田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 440-468.
Tian Xuan, Wang Liang, Ding Qi. Review of image semantic segmentation based on deep learning [J]. Journal of Software, 2019, 30(2): 440-468.
[15]
陈前, 郑利娟, 李小娟, 等. 基于深度学习的高分遥感影像水体提取模型研究[J]. 地理与地理信息科学, 2019, 35(4): 43-49.
Chen Qian, Zheng Lijuan, Li Xiaojuan, et al. Water body extraction from highresolution satellite remote sensing images based on deep learning [J]. Geography and Geoinformation Science, 2019, 35(4): 43-49.
[16]
杨瑞, 祁元, 苏阳. 深度学习U-Net方法及其在高分辨卫星影像分类中的应用[J]. 遥感技术与应用, 2020, 35(4): 767-774.
Yang Rui, Qi Yuan, Su Yang. U-Net neural networks and its application in high resolution satellite image classification [J]. Remote Sensing Technology and Application, 2020, 35(4):767-774.
[17]
Osco L P, Nogueira K, Ramos A P M, et al. Semantic segmentation of citrusorchard using deep neural networks and multispectral UAV-based imagery [J]. Precision Agriculture, 2021(4): 1-18.
[18]
Anagnostis A, Tagarakis A C, Kateris D, et al. Orchard mapping with deep learning semantic segmentation [J]. Sensors, 2021, 21(11): 3813.
[19]
Lin C, Jin Z, Mulla D, et al. Toward largescale mapping of tree crops with highresolution satellite imagery and deep learning algorithms: A case study of olive orchards in Morocco [J]. Remote Sensing, 2021, 13(9): 1740.
[20]
刘佳, 王利民, 滕飞, 等. Google Earth影像辅助的农作物面积地面样方调查[J]. 农业工程学报, 2015, 31(24): 157-162.
Liu Jia, Wang Limin, Teng Fei, et al. Crop area ground sample survey using Google Earth imageaided [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24): 149-154.
[21]
董秀春, 蒋怡, 王思, 等. 基于U-Net的甘蔗提取方法[J]. 中国农业信息, 2019, 31(6): 29-34.
Dong Xiuchun, Jiang Yi, Wang Si, et al. Extraction of sugarcane from Google Earth image based on the U-Net model [J]. China Agricultural Informatics, 2019, 31(6): 29-34.
[22]
邝辉宇, 吴俊君. 基于深度学习的图像语义分割技术研究综述[J]. 计算机工程与应用, 2019, 55(19): 12-21, 42.
Kuang Huiyu, Wu Junjun. Survey of image semantic segmentation based on deep learning [J]. Computer Engineering and Applications, 2019, 55(19): 12-21, 42.
[23]
何红术, 黄晓霞, 李红旮, 等. 基于改进U-Net网络的高分遥感影像水体提取[J]. 地球信息科学学报, 2020, 22(10): 2010-2022.
He Hongshu, Huang Xiaoxiao, Li Hongga, et al. Water body extraction of high resolution remote sensing image based on improved U-Net network [J]. Journal of Geoinformation Science, 2020, 22(10): 2010-2022.
[24]
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [C]. International Conference on Medical Image Computing and ComputerAssisted Intervention. Springer, Cham, 2015: 234-241.
[25]
Chen L C, Zhu Y K, Papandreou G, et al. Encoderdecoder with atrous separable convolution for semantic image segmentation [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 801-818.
[26]
苟杰松, 蒋怡, 李宗南, 等. 基于Deeplabv3+模型的成都平原水产养殖水体信息提取[J]. 中国农机化学报, 2021, 42(3): 105-112.
Gou Jiesong, Jiang Yi, Li Zongnan, et al. Aquaculture water body information extraction in the Chengdu plain based on DeepLabv3+ model [J]. Journal of Chinese Agriculture Mechanization, 2021, 42(3): 105-112.
[27]
苏健民, 杨岚心, 景维鹏. 基于U-Net的高分辨率遥感图像语义分割方法[J]. 计算机工程与应用, 2019, 55(7): 207-213.
Su Jianmin, Yang Lanxin, Jing Weipeng. U-Net based semantic segmentation method for high resolution remote sensing image [J]. Computer Engineering and Applications, 2019, 55(7): 207-213.
|