[1]
于改莲. 稻田除草剂的正确施用方法[J]. 农药, 2001, 12(40): 43-45.
Yu Gailian. Correct application method of herbicide in the paddy field [J]. Agrochemicals, 2001, 12(40): 43-45.
[2]
刘成良, 林洪振, 李彦明, 等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报, 2020, 51(1): 1-18.
Liu Chengliang, Lin Hongzhen, Li Yanming, et al. Analysis on status and development trend of intelligent control technology for agricultural equipment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 1-18.
[3]
范德耀, 姚青, 杨保军, 等. 田间杂草识别与除草技术智能化研究进展[J]. 中国农业科学, 2010, 43(9): 1823-1833.
Fan Deyao, Yao Qing, Yang Baojun, et al. Progress in research on intelligentization of field weed recognition and weed control technology [J]. Scientia Agricultura Sinica, 2010, 43(9): 1823-1833.
[4]
李春明, 逯杉婷, 远松灵, 等. 基于Faster R-CNN的除草机器人杂草识别算法[J]. 中国农机化学报, 2019, 40(12): 171-176.
Li Chunming, Lu Shanting, Yuan Songling, et al. Weed identification algorithm of weeding robot based on Faster R-CNN [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 171-176.
[5]
张小青, 樊江川, 郭新宇, 等. 基于Faster R-CNN的大田玉米雄穗识别及抽穗期判定研究[J]. 安徽农业大学学报, 2021, 48(5): 849-856.
Zhang Xiaoqing, Fan Jiangchuan, Guo Xinyu, et al. Research on male ear detection and tasseling stage identification of field maize based on faster R-CNN [J]. Journal of Anhui Agricultural University, 2021, 48(5): 849-856
[6]
Uijlings J R R, Sande K E A, Gevers T, et al. Selective search for object recognition [J]. International Journal of Computer Vision, 2013, 104(2): 154-171.
[7]
董浪, 许建峰, 靳江周, 等. 基于改进Faster R-CNN的梨树花芽识别方法[J]. 河北农业大学学报. 2021, 44(6): 116-121.
Dong Lang, Xu Jianfeng, Jin Jiangzhou, et al. Flower bud recognition of pear tree based on improved faster R-CNN [J]. Journal of Heibei Agricultural University, 2021, 44(6): 116-121.
[8]
樊湘鹏, 周建平, 许燕, 等. 基于优化Faster R-CNN的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34.
Fan Xiangpeng, Zhou Jiangping, Xu Yan, et al. Identification and localization of weeds based on optimized Faster R-CNN in cotton seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26-34.
[9]
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 779-788.
[10]
Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. Proceedings of European Conference on Computer Vision. Springer International Publishing, 2016: 21-37.
[11]
Long J, Shelhamer E, Trevor Darrell. Fully convolutional networks for semantic segmentation [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[12]
Dai J, He K, Sun J. Instanceaware semantic segmentation via multitask network cascades [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3150-3158.
[13]
Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation [C]. IEEE International Conference on Computer Vision. IEEE Computer Society, 2015: 1520-1528.
[14]
王璨, 武新慧, 张燕青, 等. 基于双注意力语义分割网络的田间苗期玉米识别与分割[J]. 农业工程学报, 2021, 37(9): 211-221.
Wang Can, Wu Xinhui, Zhang Yanqing, et al. Recognition and segmentation of maize seedlings in field based on dual attention semantic segmentation network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 211-221.
[15]
Huang, H, Deng, J, Lan, Y, et al. Accurateweed mapping and prescription map generation based on fully convolutional networks using UAV imagery [J]. Sensors, 2018, 18(10): 3299.
[16]
刘庆飞, 张宏立, 王艳玲. 基于深度可分离卷积的实时农业图像逐像素分类研究[J]. 中国农业科学, 2018, 51(19): 3673-3682.
Liu Qingfei, Zhang Hongli, Wang Yanlin. Realtime pixelwise classification of agricultural images based on depthwise separable convolution [J]. Scientia Agricultura Sinica, 2018, 51(19): 3673-3682.
[17]
Chen L C, Papandreou G, Kokkinos L. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[18]
邓泓, 杨滢婷, 刘兆朋, 等. 基于深度学习的无人机水田图像语义分割方法[J]. 中国农机化学报, 2021, 42(10): 165-172.
Deng Hong, Yang Yingting, Liu Zhaopeng, et al. Semantic segmentation of paddy image by UAV based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(10): 165-172.
[19]
戴雨舒, 仲晓春, 孙成明, 等. 基于图像处理和DeepLabv3+模型的小麦赤霉病识别[J]. 中国农机化学报, 2021, 42(9): 209-215.
Dai Yushu, Zhong Xiaochun, Sun Chengming, et al. Identification of fusarium head blight in wheatbased on image processing and DeepLabv3+ model [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 209-215.
[20]
王红君, 季晓宇, 赵辉, 等. SENet优化的DeepLabv3+淡水鱼体语义分割[J]. 中国农机化学报, 2021, 42(3): 158-163.
Wang Hongjun, Ji Xiaoyu, Zhao Hui, et al. SENet optimized DeepLabv3+ freshwater fish body semantic segmentation [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 158-163.
[21]
苟杰松, 蒋怡, 李宗南, 等. 基于DeepLabv3+模型的成都平原水产养殖水体信息提取[J]. 中国农机化学报, 2021, 42(3): 105-112.
Gou Jiesong, Jiang Yi, Li Zongnan, et al. Aquaculture water body information extraction in the Chengdu plain based on DeepLabv3+ model [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 105-112.
[22]
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CPVR), Las Vegas: IEEE, 2016.
|