English

中国农机化学报

中国农机化学报 ›› 2021, Vol. 42 ›› Issue (10): 165-172.DOI: 10.13733/j.jcam.issn.2095-5553.2021.10.23

• 中国农机化学报 • 上一篇    下一篇

基于深度学习的无人机水田图像语义分割方法

邓泓;杨滢婷;刘兆朋;刘木华;陈雄飞;刘鑫;   

  1. 江西农业大学软件学院;江西省现代农业装备重点实验室;江西农业大学工学院;
  • 出版日期:2021-10-05 发布日期:2021-10-05
  • 基金资助:
    国家自然科学基金(31971799)
    江西省重点研发计划(911064175061)
    江西省教育厅科学技术研究项目(GJJ190205)

Semantic segmentation of paddy image by UAV based on deep learning

Deng Hong, Yang Yingting, Liu Zhaopeng, Liu Muhua, Chen Xiongfei, Liu Xin.   

  • Online:2021-10-05 Published:2021-10-05

摘要: 为高效获取水田信息提高精准农业应用水平,提出一种基于深度学习的无人机水田图像语义分割方法。首先,采集无人机水田图像并制作一套高分辨率水田数据集,使用双边滤波去除图像噪声;然后,通过调整编码器获取更为细致的田块边界特征信息;最后,改进解码器融合更多浅层特征并采用深度可分离卷积解耦图像深度信息与空间信息,获得改进网络结构的DeepLabv3+模型。试验结果显示,改进模型的像素精度和平均交并比分别为96.04%和85.90%,与原始模型相比提升2.09%和4.66%;与典型的UNet、SegNet和PSPNet语义分割模型相比,各项指标均有不同程度的提高。本文方法能够实现准确、高效的水田分割,为进一步获取水田边界定位信息和构建高精度农田地图提供重要基础。

关键词: 精准农业, 农田边界, 语义分割, 水田, 无人机

Abstract:  In order to efficiently acquire water field information to improve precision agriculture applications, a semantic segmentation method of UAV water field images based on deep learning was proposed. Firstly, a set of highresolution water field datasets were collected, and a bilateral filter was used to remove the image noise. Then, the encoder was adjusted to obtain more detailed field boundary feature information. Finally, the decoder was improved to fuse more shallow features and decouple the image depth information and spatial information by using depth separable convolution to obtain the DeepLabv3+ model with improved network structure. The experimental results showed that the pixel accuracy and average crossmerge ratio of the improved model were 96.04% and 85.90%, respectively, which were 2.09% and 4.66% better than the original model. Compared with the typical UNet, SegNet, and PSPNet semantic segmentation models, all the indexes had varying degrees of improvement. The method in this paper achieved accurate and efficient paddy field segmentation, which provided an important basis for obtaining paddy field boundary localization information and constructing highprecision farmland maps in the further.


Key words: precision agriculture, field margins, semantic segmentation, paddy field, unmanned aerial vehicle

中图分类号: