[1]
李瑾, 冯献, 郭美荣. 我国农业信息化发展的形势与对策[J]. 华南农业大学学报(社会科学版), 2015, 14(4): 9-19.
Li Jin, Feng Xian, Guo Meirong. Analysis and countermeasures for the development of agricultural informatization in China [J]. Journal of South China Agricultural University (Social Science Edition), 2015, 14(4): 9-19.
[2]
罗锡文, 臧英, 周志艳. 精细农业中农情信息采集技术的研究进展[J]. 农业工程学报, 2006(1): 167-173.
Luo Xiwen, Zang Ying, Zhou Zhiyan. Research progress in farming information acquisition technique for precision agriculture [J]. Transactions of the Chinese Society of Agricultural Engineering, 2006(1): 167-173.
[3]
Yang C. Remote sensing and precision agriculture technologies for crop disease detection and management with a practical application example [J]. Engineering, 2020, 6(5): 528-532.
[4]
黄志宏, 张波, 兰玉彬, 等. 基于UAVWSN的农田数据采集[J]. 华南农业大学学报, 2016, 37(1): 104-109.
Huang Zhihong, Zhang Bo, Lan Yubin, et al. Farm field data collection based on UAVWSN [J]. Journal of South China Agricultural University, 2016, 37(1): 104-109.
[5]
TorresSanchez J, LopezGranados F, Peia J M. An automatic objectbased method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops [J]. Computers and Electronics in Agriculture, 2015, 11(4): 43-52.
[6]
魏青, 张宝忠, 魏征. 基于无人机多光谱影像的地物识别[J]. 新疆农业科学, 2020, 57(5): 932-939.
Wei Qing, Zhang Baozhong, Wei Zheng. Research on object recognition based on UAV multispectral image [J]. Xinjiang Agricultural Sciences, 2020, 57(5): 932-939.
[7]
韩文霆, 郭聪聪, 张立元, 等. 基于无人机遥感的灌区土地利用与覆被分类方法[J]. 农业机械学报, 2016, 47(11): 270-277.
Han Wenting, Guo Congcong, Zhang Liyuan, et al. Classification method of land cover and irrigated farm land use based on UAV remote sensing in irrigation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 270-277.
[8]
汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5): 152-159.
Wang Xiaoqin, Wang Miaomiao, Wang Shaoqiang, et al. Extraction of vegetation information from visible unmanned aerial vehicle images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 152-159.
[9]
吴晗, 林晓龙, 李曦嵘, 等. 面向农业应用的无人机遥感影像地块边界提取[J]. 计算机应用, 2019, 39(1): 298-304.
[10]
张磊, 王书茂, 陈兵旗, 等. 基于机器视觉的麦田边界检测[J]. 农业机械学报, 2007(2): 111-114.
Zhang Lei, Wang Shumao, Chen Bingqi, et al. Edge detection for wheat field based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2007(2): 111-114.
[11]
Yuan X, Shi J, Gu L. A review of deep learning methods for semantic segmentation of remote sensing imagery [J]. Expert Systems with Applications, 2020: 114417.
[12]
Gai J, Xiang L, Tang L. Using a depth camera for crop row detection and mapping for undercanopy navigation of agricultural robotic vehicle [J]. Computers and Electronics in Agriculture, 2021, 188: 106301.
[13]
朱淑鑫, 谢忠红, 徐慧, 等. 基于机器视觉的田间道路检测方法[J]. 江苏农业学报, 2013, 29(6): 1291-1296.
[14]
Cheng T, Ji X, Yang G, et al. DESTIN: A new method for delineating the boundaries of crop fields by fusing spatial and temporal information from WorldView and Planet satellite imagery [J]. Computers and Electronics in Agriculture, 2020, 178: 105787.
[15]
周俊, 王明军, 邵乔林. 农田图像绿色植物自适应分割方法[J]. 农业工程学报, 2013, 29(18): 163-170.
Zhou Jun, Wang Mingjun, Shao Qiaolin. Adaptive segmentation of field image for green plants [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(18): 163-170.
[16]
高国琴, 李明. 基于Kmeans算法的温室移动机器人导航路径识别[J]. 农业工程学报, 2014, 30(7): 25-33.
Gao Guoqin, Li Ming. Navigating path recognition for greenhouse mobile robot based on Kmeans algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(7): 25-33.
[17]
蔡道清, 周洪宇, 覃程锦, 等. 基于小波变换的农田图像光照不变特征提取算法[J]. 农业机械学报, 2020, 51(2): 15-20.
Cai Daoqing, Zhou Hongyu, Qin Chengjin, et al. Extraction algorithm of illumination invariant feature for farmland image based on wavelet transform [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 15-20.
[18]
黄亦其, 刘琪, 赵建晔, 等. 基于深度卷积神经网络的红树林物种无人机监测研究[J]. 中国农机化学报, 2020, 41(2): 141-146, 189.
Huang Yiqi, Liu Qi, Zhao Jianye, et al. Research on unmanned aerial surveillance of mangrove species based on deep convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 141-146, 189.
[19]
Chen Z, Ting D, Newbury R, et al. Semantic segmentation for partially occluded apple trees based on deep learning [J]. Computers and Electronics in Agriculture, 2021, 181: 105952.
[20]
Diakogiannis F I, Waldner F, Caccetta P, et al. ResUNeta: A deep learning framework for semantic segmentation of remotely sensed data [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 94-114.
[21]
Chen L C, Zhu Y, Papandreou G, et al. Encoderdecoder withatrous separable convolution for semantic image segmentation [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 801-818.
[22]
刘文祥, 舒远仲, 唐小敏, 等. 采用双注意力机制Deeplabv3+算法的遥感影像语义分割[J]. 热带地理, 2020, 40(2): 303-313.
[23]
朱秀芳, 李石波, 肖国峰. 基于无人机遥感影像的覆膜农田面积及分布提取方法[J]. 农业工程学报, 2019, 35(4): 106-113.
Zhu Xiufang, Li Shibo, Xiao Guofeng. Method on extraction of area and distribution of plasticmulched farmland based on UAV images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(4): 106-113.
[24]
孙钰, 韩京冶, 陈志泊, 等. 基于深度学习的大棚及地膜农田无人机航拍监测方法[J]. 农业机械学报, 2018, 49(2): 133-140.
Sun Yu, Han Jingye, Chen Zhibo, et al. Monitoring method for UAV image of greenhouse and plasticmulched landcover based on deep learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 133-140.
[25]
任全会, 杨保海. 图像处理技术在田间杂草识别中应用研究[J]. 中国农机化学报, 2020, 41(6): 154-158.
Ren Quanhui, Yang Baohai. Application of image processing technology in weed recognition in field [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(6): 154-158.
[26]
Chen Zhikun, Jiang Junjun, Zhou Chong, et al. SuperBF: Superpixelbased bilateral filtering algorithm and its application in feature extraction of hyperspectral images [J]. IEEE Access, 2019, 7: 147796-147807.
[27]
Chollet F. Xception: Deep learning with depthwise separable convolutions [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[28]
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890.
[29]
Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoderdecoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[30]
Ronneberger O, Fischer P, Brox T. Unet: Convolutional networks for biomedical image segmentation [C]. International Conference on Medical Image Computing and ComputerAssisted Intervention. Springer, Cham, 2015: 234-241.
|