[1] Hu W, Fitzgerald M, Topp B, et al. A review of biological functions, health benefits, and possible de novo biosynthetic pathway of palmitoleic acid in macadamia nuts [J]. Journal of Functional Foods, 2019, 62: 103520.
[2] Tu X H, Wu B, Xie Y, et al. A comprehensive study of raw and roasted macadamia nuts: Lipid profile, physicochemical, nutritional, and sensory properties [J]. Food Science & Nutrition, 2021, 9(3): 1688-1697.
[3] Trueman S J. The reproductive biology of macadamia [J]. Scientia Horticulturae, 2013, 150: 354-359.
[4] Mavridou E, Vrochidou E, Papakostas G A, et al. Machine vision systems in precision agriculture for crop farming [J]. Journal of Imaging, 2019, 5(12): 89.
[5] Yang B, Xu Y. Applications of deeplearning approaches in horticultural research: A review [J]. Horticulture Research, 2021, 8: 445.
[6] 樊湘鹏, 许燕, 周建平, 等. 基于迁移学习和改进CNN的葡萄叶部病害检测系统[J]. 农业工程学报, 2021, 37(6): 151-159.
Fan Xiangpeng, Xu Yan, Zhou Jianping, et al. Detection system for grape leaf diseases based on transfer learning and updated CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 151-159.
[7] 王云露, 吴杰芳, 兰鹏, 等. 基于改进Faster RCNN的苹果叶部病害识别方法[J]. 林业工程学报, 2022, 7(1): 153-159.
Wang Yunlu, Wu Jiefang, Lan Peng, et al. Apple disease identification using improved Faster RCNN [J]. Journal of Forestry Engineering, 2022, 7(1): 153-159.
[8] 王国伟, 刘嘉欣. 基于卷积神经网络的玉米病害识别方法研究[J]. 中国农机化学报, 2021, 42(2): 139-145.
Wang Guowei, Liu Jiaxin. Research on corn disease recognition method based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 139-145.
[9] 赵越, 赵辉, 姜永成, 等. 基于深度学习的马铃薯叶片病害检测方法[J]. 中国农机化学报, 2022, 43(10): 183-189.
Zhao Yue, Zhao Hui, Jiang Yongcheng, et al. Detection method of potato leaf diseases based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 183-189.
[10] 韦锦, 李正强, 许恩永, 等. 基于DA2-YOLOv4算法绿篱识别研究[J]. 中国农机化学报, 2022, 43(9): 122-130.
Wei Jing, Li Zhenqiang, Xu Enyong, et al. Research on hedge recognition based on DA2-YOLOv4 algorithm [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 122-130.
[11] 候瑞环, 杨喜旺, 王智超, 等. 一种基于YOLOv4-TIA的林业害虫实时检测方法[J]. 计算机工程, 2022, 48(4): 255-261.
Hou Ruihuan, Yang Xiwang, Wang Zhichao, et al. A realtime detection method for forestry pests based on YOLOv4-TIA [J]. Computer Engineering, 2022, 48(4): 255-261.
[12] Li G, Suo R, Zhao G, et al. Realtime detection of kiwifruit flower and bud simultaneously in orchard using YOLOv4 for robotic pollination [J]. Computers and Electronics in Agriculture, 2022, 193: 106641.
[13] Roy A M, Bhaduri J. Realtime growth stage detection model for high degree of occultation using DenseNetfused YOLOv4[J]. Computers and Electronics in Agriculture, 2022, 193: 106694.
[14] Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning [J]. Journal of Big Data, 2019, 6(1): 1-48.
[15] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection [J]. ArXiv Preprint ArXiv: 2004, 2020: 10934.
[16] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[17] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[18] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[19] Liu Y, Sun P, Wergeles N, et al. A survey and performance evaluation of deep learning methods for small object detection [J]. Expert Systems with Applications, 2021, 172: 114602.
[20] Farhadi A, Redmon J. Yolov3: An incremental improvement [C]. Computer Vision and Pattern Recognition. Berlin/Heidelberg, Germany: Springer, 2018, 1804: 1-6.
|