[1] Sugimoto M, Takeuchi K, Yamaji T, et al. A study for development of autonomous paddyweeding robot systeman experimentation for autonomously straightrunning based on compasscompensation [J]. International Journal of New Computer Architectures and Their Applications, 2018, 8(4): 186-198.
[2] Pan D, Gao Q, Zhao P, et al. Design and test of a distributed control system of weeding robot based on multiSTM32 and CAN bus [C]. Journal of Physics: Conference Series. IOP Publishing, 2022(1): 012019.
[3] 卜钒. 火焰除草土壤受热特性及喷火参数优化试验研究[D].扬州: 扬州大学, 2022.
Bu Fan. Optimization test of soil heating characteristics and fire spray parameters for flame weeding [D]. Yangzhou: Yangzhou University, 2022.
[4] Sivesind E C, Leblanc M L, Cloutier D C, et al. Impact of selective flame weeding on onion yield, pungency, flavonoid concentration, and weeds [J]. Crop Protection, 2012, 39: 45-51.
[5] Rajkovic' M, Malida G, Toma Simin M, et al. Sustainable organic corn production with the use of flame weeding as the most sustainable economical solution [J]. Sustainability, 2021, 13(2): 572.
[6] Rahkonen J, Pietikinen J, Jokela H. The effects of flame weeding on soil microbial biomass [J]. Biological Agriculture & Horticulture, 1999, 16(4): 363-368.
[7] 陈宇. 火焰微耕机的设计[D]. 合肥: 安徽农业大学, 2018.
Chen Yu. The design of flame micro plowing machine [D].Hefei: Anhui Agricultural University, 2018.
[8] 何秀龙, 冉海燕, 兰献敏, 等. 高温火焰对幼龄茶园杂草的防除效果[J]. 杂草学报, 2022, 40(2): 60-65.
He Xiulong, Ran Haiyan, Lan Xianmin, et al. Effect of hightemperature flame on weeding in young tea garden [J]. Journal of Weed Science, 2022, 40(2): 60-65.
[9] 白苗苗. 土壤多孔介质热质传递过程数值模拟与试验研究[D]. 西安: 陕西科技大学,2016.
Bai miaomiao. Simulation and experimental research on heat mass transfer process of sandy soil porous media [D]. Xian: Shanxi University of Science and Technology, 2016.
[10] 孙静鑫, 司海涛, 李晓斌, 等. 杂粮籽粒恢复系数测定试验与分析[J]. 中国农机化学报, 2020, 41(6): 88-93.
Sun Jingxin, Si Haitao, Li Xiaobin, et al. Measurement test and analysis on the restitution coefficient of the coarse cereals grain [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(6): 88-93.
[11] 李贝, 黄遂, 陈羽, 等. 土壤颗粒滚动摩擦系数测量及工程验证[J]. 机械设计与制造, 2024(3): 53-56.
Li Bei, Huang Sui, Chen Yu, et al. Measurement and engineering validation of soil particle rolling friction coefficient [J]. Machinery Design & Manufacture, 2024(3): 53-56.
[12] 刘坤宇, 苏宏杰, 李飞宇, 等. 基于响应曲面法的土壤离散元模型的参数标定研究[J]. 中国农机化学报, 2021, 42(9): 143-149.
Liu Kunyu, Su Hongjie, Li Feiyu, et al. Research on parameter calibration of soil discrete element model based on response surface method [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 143-149.
[13] 李金光. 基于离散元法的菠菜收获机根切铲优化设计与试验[D]. 泰安: 山东农业大学, 2020.
Li Jinguang. Optimization design and test of spinach harvesters rootcutting shovel based on discrete element method [D]. Taian: Shandong Agricultural University, 2020.
[14] 侯彬, 范爱武. 甲烷掺氢微管射流火焰燃烧极限的数值模拟[J]. 中南大学学报(自然科学版), 2022, 53(12): 4589-4601.
Hou Bin, Fan Aiwu. Numerical simulation of combustion limits of micro methane jet flames with hydrogen addition [J]. Journal of Central South University (Science and Technology), 2022, 53(12): 4589-4601.
[15] 王凤花, 宋彦, 赖庆辉, 等. 三七土壤水蒸气消毒针结构设计与试验[J]. 农业机械学报, 2019, 50(8): 123-130.
Wang Fenghua, Song Yan, Lai Qinghui, et al. Structural design and test of soil Steam disinfection needle in panax notoginseng field [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 123-130.
[16] 杨小平, 邓国兰, 张境昌. 地下U形埋管传热及土壤温度分布研究[J]. 能源与节能, 2023(9): 20-22, 224.
Yang Xiaoping, Deng Guolan, Zhang Jingchang. Heat transfer and soil temperature distribution of underground ushaped buried pipes [J]. Energy and Energy Conservation, 2023(9): 20-22, 224.
[17] 王金香. 多孔介质土壤热渗耦合模型及埋管周围土壤温度场数值模拟研究[D]. 大连: 大连理工大学, 2006.
Wang Jinxiang. Model considering thermal conduction and groundwater advection of soil viewed as porous medium and numerical simulation on soil temperature field around underground heat exchanger [D]. Dalian: Dalian University of Technology, 2006.
|