[ 1 ] 程一松, 胡春胜. 高光谱遥感在精准农业中的应用[J]. 农业系统科学与综合研究, 2001(3): 193-195.
[ 2 ] 盛强, 郑建明, 刘江山, 等. 基于CiteSpace的内表面缺陷检测研究进展与趋势[J]. 光谱学与光谱分析, 2023, 43(1): 9-15.
Sheng Qiang, Zheng Jianming, Liu Jiangshan, et al. Advances and prospects in inner surface defect detection based on CiteSpace [J]. Spectroscopy and Spectral Analysis, 2023, 43 (1): 9-15.
[ 3 ] 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253.
[ 4 ] 赵绘存. 商业模式创新发展态势的知识图谱分析[J]. 中国科技论坛, 2016(1): 38-43.
[ 5 ] 姜妍, 王琳, 杨月, 等. 无人机高光谱成像技术在作物生长信息监测中的应用[J]. 东北农业大学学报, 2022, 53(3): 88-96.
[ 6 ] 高文强, 肖志云. 基于Atrous—CDAE—1DCNN的紫丁香高光谱数据的叶绿素含量反演[J]. 中国农机化学报, 2022, 43(7): 158-166.
Gao Wenqiang, Xiao Zhiyun. Inversion of chlorophyll content of lilac hyperspectral data based on Atrous—CDAE—1DCNN [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 158-166.
[ 7 ] 祝海竣, 付虹雨, 王学华, 等. 高光谱早稻生理指标可跨期预测性的初步研究[J]. 光谱学与光谱分析, 2022, 42(1): 170-175.
Zhu Haijun, Fu Hongyu, Wang Xuehua, et al. Preliminary study on the intertemporal predictability of the physiological index of early rice based on hyperspectral [J]. Spectroscopy and Spectral Analysis, 2022, 42(1): 170-175.
[ 8 ] Cao Q, Yang G, Duan D, et al. Combining multispectral and hyperspectral data to estimate nitrogen status of tea plants (Camellia sinensis (L.) O. Kuntze) under field conditions [J]. Computers and Electronics in Agriculture, 2022(198).
[ 9 ] 金宇豪, 石楠, 文双雅, 等. 菜油兼用型油菜籽粒油酸含量的高光谱模型构建[J]. 南方农业学报, 2021, 52(6): 1674-1682.
[10] Torres‑Tello J W, Ko S, Singh K D, et al. A novel approach to identify the spectral bands that predict moisture content in canola and wheat [J]. Biosystems Engineering, 2021, 210: 91-103.
[11] 甘甜, 李雷, 李红叶, 等. 基于多源遥感数据和机器学习算法的冬小麦产量预测研究[J]. 麦类作物学报, 2022, 42(11): 1419-1428.
[12] 吕美蓉, 任国兴, 李雪莹, 等. 光谱数据预处理对潮间带沉积物氮LSSVM模型的影响研究[J]. 光谱学与光谱分析, 2020, 40(8): 2409-2414.
Lü Meirong, Ren Guoxing, Li Xueying, et al. The effect of spectral pretreatment on the LSSVM model of nitrogen in intertidal sediments [J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2409-2414.
[13] 金承亮, 王永军, 黄河, 等. 高维红外光谱数据预处理在中药材产地鉴别中的应用[J]. 光谱学与光谱分析, 2023, 43(7): 2238-2245.
Jin Chengliang, Wang Yongjun, Huang He, et al. Application of high‑dimensional infrared spectral data preprocessing in the origin identification of traditional Chinese materials [J]. Spectroscopy and Spectral Analysis, 2023, 43(7): 2238-2245.
[14] 史波林, 赵镭, 刘文, 等. 苹果内部品质近红外光谱检测的异常样本分析[J]. 农业机械学报, 2010, 41(2): 132-137.
Shi Bolin, Zhao Lei, Liu Wen, et al. Outlier sample analysis on near infrared spectroscopy determination for apple interior quality [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(2): 132-137.
[15] 刘红芸, 吴雪梅, 李德仑, 等. 基于高光谱技术的采摘期烟叶水分含量研究[J]. 中国农机化学报, 2021, 42(9): 157-163.
Liu Hongyun, Wu Xuemei, Li Delun, et al. Study on the moisture content of tobaco leaves during the picking period based on hyperspectral technology [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 157-163.
[16] 田海清, 王春光, 张海军, 等. 蜜瓜品质光谱检测中异常建模样品的综合评判[J]. 光谱学与光谱分析, 2012, 32(11): 2987-2991.
Tian Haiqing, Wang Chunguang, Zhang Haijun, et al. Outlier sample discriminating methods for building calibration model in melons quality detecting using NIR spectra [J]. Spectroscopy and Spectral Analysis, 2012, 32(11): 2987-2991.
[17] 曲歌, 陈争光, 张庆华. 基于无信息变量消除法的水稻种子发芽率测定[J]. 江苏农业学报, 2019, 35(5): 1015-1020.
[18] BehnoodR, Paul S, Pedram G, et al. Noise reduction in hyperspectral imagery: Overview and application [J]. Remote Sensing, 2018, 10(3): 482.
[19] 崔宾阁, 马秀丹, 谢小云. 小样本的高光谱图像降噪与分类[J]. 遥感学报, 2017, 21(5): 728-738.
[20] Grisanti E, Totska M, Huber S, et al. Dynamic localized SNV, peak SNV, and partial peak SNV: Novel standardization methods for preprocessing of spectroscopic data used in predictive modeling [J]. Journal of Spectroscopy, 2018, 2018: 1-14.
[21] Li Y H, Tan X, Zhang W, et al. Research and application of several key techniques in hyperspectral image preprocessing [J]. Frontiers in Plant Science, 2021, 12: 627865.
[22] Li C, Fan P, Jiang K, et al. Melon seed variety identification based on hyperspectral technology combined with discriminant analysis [J]. Bangladesh Journal of Botany, 2017, 46(3): 1153-1160.
[23] Esquerre C, Gowen A A, Burger J, et al. Suppressing sample morphology effects in near infrared spectral imaging using chemometric data pre‑treatments [J]. Chemometrics & Intelligent Laboratory Systems, 2012.
[24] Wang Q, Liu Y, Xu Q, et al.Identification of mildew degrees in honeysuckle using hyperspectral imaging combined with variable selection [J]. Journal of Food Measurement and Characterization, 2019, 13(3): 2157-2166.
[25] Roger J C. A review of orthogonal projections for calibration [J]. Journal of Chemometrics, 2018, 32(9).
[26] Hasanzadeh B, Abbaspour‑Gilandeh Y, Soltani‑Nazarloo A, et al. Non‑destructive detection of fruit quality parameters using hyperspectral imaging, multiple regression analysis and artificial intelligence [J]. Horticulturae, 2022, 8(7): 598.
[27] 苏红军, 杜培军, 盛业华. 高光谱遥感数据光谱特征提取算法与分类研究[J]. 计算机应用研究, 2008(2): 390-394.
[28] 叶磊, 韦克苏, 李德仑, 等. 基于改进RF特征选择策略的烤烟油分高光谱特征分析[J]. 中国农机化学报, 2021, 42(8): 196-202.
Ye Lei, Wei Kesu, Li Delun, et al. Analysis of hyperspectral characteristics of flue‑cured tobacco oil based on improved RF feature selection strategy [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 196-202.
[29] Zhao X, Zhang J, Pu R, et al. The continuous wavelet projections algorithm: A practical spectral‑feature‑mining approach for crop detection [J]. The Crop Journal, 2022, 10(5): 1264-1273.
[30] Hong G, Abd El‑Hamid H T. Hyperspectral imaging using multivariate analysis for simulation and prediction of agricultural crops in Ningxia, China [J]. Computers and Electronics in Agriculture, 2020, 172: 105355.
[31] Song D, Gao D, Sun H, et al. Chlorophyll content estimation based on cascade spectral optimizations of interval and wavelength characteristics [J]. Computers and Electronics in Agriculture, 2021, 189: 106413.
[32] Huang L, Zhang H, Ruan C, et al. Detection of scab in wheat ears using in situ hyperspectral data and support vector machine optimized by genetic algorithm [J]. International Journal of Agricultural and Biological Engineering, 2020, 13(2): 182-188.
[33] 杜培军, 陈云浩, 方涛, 等. 高光谱遥感数据光谱特征的提取与应用[J]. 中国矿业大学学报, 2003(5): 34-38.
[34] Luo M, Bors A G. Principal component analysis of spectral coefficients for mesh watermarking [C]. 2008 15th IEEE International Conference on Image Processing. IEEE, 2008: 441-444.
[35] Delwiche S R, Baek I, Kim M S. Does spatial region of interest (ROI) matter in multispectral and hyperspectral imaging of segmented wheat kernels? [J]. Biosystems Engineering, 2021, 212:106-114.
[36] Ma L, Chen X, Zhang Q, et al. Estimation of nitrogen content based on the hyperspectral vegetation indexes of interannual and multi‑temporal in cotton [J]. Agronomy, 2022, 12(6): 1319.
[37] 杜明华, 杨甜, 马燕, 等. 基于NIR高光谱成像技术的番茄叶片叶绿素含量检测[J]. 江苏农业科学, 2022, 50(20): 48-55.
[38] 冯海宽, 陶惠林, 赵钰, 等. 利用无人机高光谱估算冬小麦叶绿素含量[J]. 光谱学与光谱分析, 2022, 42(11): 3575-3580.
Feng Haikuan, Tao Huilin, Zhao Yu, et al. Estimation of chlorophyll content in winter wheat based on UAV hyperspectral [J]. Spectroscopy and Spectral Analysis, 2022, 42(11): 3575-3580.
[39] 吾木提 ⋅ 艾山江, 尼加提 ⋅ 卡斯木, 陈晨, 等. 基于多维高光谱植被指数的冬小麦叶面积指数估算[J]. 农业机械学报, 2022, 53(5): 181-190.
Umut Hasan, Nijat Kasim, Chen Chen, et al. Estimation of winter wheat LAI based on multi‑dimensional hyperspectral vegetation indices [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 181-190.
|