[1] 黄宏文, 龚俊杰, 王圣梅, 等. 猕猴桃属(Actinidia)植物的遗传多样性[J]. 生物多样性, 2000(1): 1-12.
Huang Hongwen, Gong Junjie, Wang Shengmei, et al. Genetic diversity in the genus Actinidia [J]. Biodiversity Science, 2000(1): 1-12.
[2] 王周宇. 猕猴桃采摘机器人自动搬运装箱装置的设计与研究[D]. 杨凌: 西北农林科技大学, 2019.
Wang Zhouyu. Design and research of automatic conveying and packing machine on kiwifruit harvesting robot [D]. Yangling: Northwest A & F University, 2019.
[3] 金玉成, 刘继展, 徐朱洁, 等. 农业机器人技术发展现状与趋势[J]. 农业工程技术, 2021, 41(33): 87.
[4] 王宜磊, 陈霖, 易柳舟, 等. 猕猴桃采摘机械手末端执行机构的设计[J]. 食品与机械, 2018, 34(1): 89-91, 148.
Wang Yilei, Chen Lin, Yi Liuzhou, et al. Design of the terminal actuator of kiwi fruit picking manipulator [J]. Food and Machinery, 2018, 34(1): 89-91, 148.
[5] 傅隆生, 张发年, 槐岛芳德, 等. 猕猴桃采摘机器人末端执行器设计与试验[J]. 农业机械学报, 2015, 46(3): 1-8.
Fu Longsheng, Zhang Fanian, Gejima Yoshinori, et al. Development and experiment of endeffector for kiwifruit harvesting robot [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 1-8.
[6] 杨庆华, 金寅德, 钱少明, 等. 基于气动柔性驱动器的苹果采摘末端执行器研究[J]. 农业机械学报, 2010, 41(9): 154-158, 204.
Yang Qinghua, Jin Yinde, Qian Shaoming, et al. Research on end-effector of apple picking based on new flexible pneumatic actuator [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(9): 154-158, 204.
[7] 熊安迪. SRT软体机器人: 给机器人装上灵巧、柔软的“手”[J]. 机器人产业, 2021(1): 107-112.
[8] Amend J, Cheng N, Fakhouri S, et al. Soft robotics commercialization: Jamming grippers from research to product [J]. Soft Robotics, 2016, 3(4): 213-222.
[9] 陈发河, 于新, 张维一, 等. 无核白葡萄果柄结构与落粒关系的研究[J]. 新疆农业大学学报, 2000(1): 44-48.
Chen Fahe, Yu Xin, Zhang Weiyi, et al. Study on relationship between pedicel structure and berry [J]. Journal of Xinjiang Agricultural University, 2000(1): 44-48.
[10] 张发年. 猕猴桃无损采摘末端执行器的设计与研究[D]. 杨凌: 西北农林科技大学, 2014.
Zhang Fanian. Research and design on the nondestructive endeffector of kiwifruit harvesting robot [D]. Yangling: Northwest A & F University, 2014.
[11] 陈军, 王虎, 蒋浩然, 等. 猕猴桃采摘机器人末端执行器设计[J]. 农业机械学报, 2012, 43(10): 151-154, 199.
Chen Jun, Wang Hu, Jiang Haoran, et al. Design of end-effector for kiwifruit harvesting robot [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(10): 151-154, 199.
[12] 李晓芳, 杨晓翔. 橡胶材料的超弹性本构模型[J]. 弹性体, 2005(1): 50-58.
Li Xiaofang, Yang Xiaoxiang. A review of elastic constitutive model for rubber materials [J]. China Elastonierics, 2005(1): 50-58.
[13] 王浩. 橡胶材料的超弹性本构模型在轮胎分析中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2008.
Wang Hao. Applcation of hyper-elastic constitutive models on rubbers in tyre analysis [D]. Harbin: Harbin Institute of Technology, 2008.
[14] 路纯红, 白鸿柏. 粘弹性材料本构模型的研究[J]. 高分子材料科学与工程, 2007, 23(6): 28-31, 35.
Lu Chunhong, Bai Hongbai. Study on constitutive model of viscoelastic material [J]. Polymer Materials Science & Engineering, 2007, 23(6): 28-31, 35.
[15] 李忱, 杨桂通. 非线性超弹性体应力应变张量与应变能函数之间的微积分关系[J]. 太原理工大学学报, 2009, 40(2): 188-191.
Li Chen, Yang Guitong. The differential/integral relations between stress-strain tensor and strain energy function of nonlinear elastic solids [J]. Journal of Taiyuan University of Technology, 2009, 40(2): 188-191.
[16] Agosti A, Gower A L, Ciarletta P. The constitutive relations of initially stressed in compressible Mooney-Rivlin materials [J]. Mechanics Research Communications, 2018, 93: 4-10.
[17] Treloar L R G. The physics of rubber elasticity [M]. 1975.
[18] Lee B S, Rivin E I. Finite element analysis of load-deflection and creep characteristics of compressed rubber components for vibration control devices [J]. Journal of Mechanical Design, 1996, 118(3): 328-336.
[19] Harmandeep J. Factors affecting the replacement of wooden harvesting bins with plastic equivalents for the New Zealand kiwifruit industry [D]. University of Waikato, 2010.
|