[1] Burks R L, Bernatis J, Byers J E, et al. Identity, reproductive potential, distribution, ecology and management of invasive Pomacea maculata in the southern united states [J]. Biology and Management of Invasive Apple Snails. Philippine Rice Research Institute, Maligaya, Science City of Muoz, Nueva Ecija, 2017, 3119: 293-333.
[2] 刘义满, 戢小梅, 李长林, 等. 福寿螺[Pomacea canaliculata (Lamarck, 1819)]的世界分布[J]. 湖北农业科学, 2019, 58(6): 70-72, 77.
Liu Yiman, Ji Xiaomei, Li Changlin, et al. The global distribution of apple snail [Pomacea canaliculata (Lamarck, 1819)] [J]. Hubei Agricultural Sciences, 2019, 58(6): 70-72, 77.
[3] 任和, 高红娟, 薛娟, 等. 福寿螺的生物学特性与防治[J]. 生物学通报, 2020, 55(12): 1-3.
Ren He, Gao Hongjuan, Xue Juan, et al. The preliminary study on biological characteristics and control methods of Pomacea canaliculata [J]. Bulletin of Biology, 2020, 55(12): 1-3.
[4] 卓富彦, 王华生, 刘万才. 2011—2020年我国农田福寿螺发生防控情况[J]. 中国植保导刊, 2022, 42(1): 52-55.
Zhuo Fuyan, Wang Huasheng, Liu Wancai. Occurrence and management of Pomacea canaliculata in the farmland of China from 2011 to 2020 [J]. China Plant Protection, 2022, 42(1): 52-55.
[5] 魏然, 吴承东, 谢洪芳, 等. 入侵性有害生物福寿螺在江苏的风险分析[J]. 扬州大学学报(农业与生命科学版), 2021, 42(6): 119-124, 37.
Wei Ran, Wu Chengdong, Xie Hongfang, et al. Risk analysis of the alien invasive pest Pomacea spp. in Jiangsu Province [J]. Journal of Yangzhou University(Agricultural and Life Science Edition), 2021, 42(6): 119-124, 37.
[6] 贺超, 杨倩倩, 刘苏汶, 等. 我国外来入侵生物福寿螺种类的多重PCR鉴别方法[J]. 植物保护学报, 2019, 46(1): 97-105.
He Chao, Yang Qianqian, Liu Suwen, et al. Multiplex PCR detection of alien invasive apple snails introduced to China [J]. Journal of Plant Protection, 2019, 46(1): 97-105.
[7] Xu Y, Liu N, Yin T, et al. A multiscale feature fusion method for automatic detection of eggs from two Pomacea spp. in UAV aerial images [J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.
[8] 苗海委, 周慧玲. 基于深度学习的粘虫板储粮害虫图像检测算法的研究[J]. 中国粮油学报, 2019, 34(12): 93-99.
Miao Haiwei, Zhou Huiling. Detection of storedgrain insects image on sticky board u sing deep learning [J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(12): 93-99.
[9] Chen J, Chen J, Zhang D, et al. Using deep transfer learning for imagebased plant disease identification [J]. Computers and Electronics in Agriculture, 2020, 173: 105393.
[10] 张博, 张苗辉, 陈运忠. 基于空间金字塔池化和深度卷积神经网络的作物害虫识别[J]. 农业工程学报, 2019, 35(19): 209-215.
Zhang Bo, Zhang Miaohui, Chen Yunzhong. Crop pest identification based on spatial pyramid pooling and deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 209-215.
[11] 骆润玫, 殷惠莉, 刘伟康, 等. 基于YOLOv5-C的复杂背景广佛手病虫害识别[J]. 华南农业大学学报, 2023(1): 1-16.
Luo Runmei, Yin Huili, Liu Weikang, et al. Identification of bergamot pests and diseases in complex back ground using YOLOv5-C algorithm [J]. Journal of South China Agricultural University, 2023(1): 1-16.
[12] Fuentes A, Yoon S, Kim S C, et al. A robust deeplearningbased detector for realtime tomato plant diseases and pests recognition [J]. Sensors, 2017, 17(9): 2022.
[13] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[14] Yan B, Fan P, Lei X, et al. A realtime apple targets detection method for picking robot based on improved YOLOv5 [J]. Remote Sensing, 2021, 13(9): 1619.
[15] Chen Z, Wu R, Lin Y, et al. Plant disease recognition model based on improved YOLOv5[J]. Agronomy, 2022, 12(2): 365.
[16] Chen J, Zhang H, He X, et al. Attentive collaborative filtering: Multimedia recommendation with itemand componentlevel attention [C]. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2017: 335-344.
[17] 黄彤镔, 黄河清, 李震, 等. 基于YOLOv5改进模型的柑橘果实识别方法[J]. 华中农业大学学报, 2022, 41(4): 170-177.
Huang Tongbin, Huang Heqing, Li Zhen, et al. Citrus fruit recognition method based on the improved model of YOLOv5 [J]. Journal of Huazhong Agricultural University, 2022, 41(4): 170-177.
[18] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[19] 蒋芸, 张海, 陈莉, 等. 基于卷积神经网络的图像数据增强算法[J]. 计算机工程与科学, 2019, 41(11):2007-2016.
Jiang Yun, Zhang Hai, Chen Li, et al. An image data augmentation algorithm based on convolutional neural networks [J]. Computer Engineering & Science, 2019, 41(11): 2007-2016.
|