Journal of Chinese Agricultural Mechanization ›› 2024, Vol. 45 ›› Issue (8): 138-147.DOI: 10.13733/j.jcam.issn.2095‑5553.2024.08.021
Previous Articles Next Articles
Yang Fan1, 2, Teng Li3, Sun Yitian1, 4, Sun Yongjia1, 4, Jiang Zhenhan1, Hou Jialin2
Online:
2024-08-15
Published:
2024-07-26
杨帆1,2,滕利3,孙宜田1,4,孙永佳1,4,蒋振晗1,侯加林2
基金资助:
CLC Number:
Yang Fan, , Teng Li, Sun Yitian, , Sun Yongjia, , Jiang Zhenhan, Hou Jialin. Development status and prospect of intelligent chassis of agricultural machinery [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(8): 138-147.
杨帆, 滕利, 孙宜田, 孙永佳, 蒋振晗, 侯加林. 农业机械底盘智能化发展现状与展望[J]. 中国农机化学报, 2024, 45(8): 138-147.
[ 1 ] Chen L Q, Ma P P, Tian J L, et al. Prediction and optimization of lubrication performance for a transfer case based on computational fluid dynamics [J]. Engineering Applications of Computational Fluid Mechanics, 2019, 13(1): 1013-1023. [ 2 ] 郑利双. 一种新型水田栽植机底盘的理论分析与试验研究[D]. 哈尔滨: 东北农业大学, 2014. Zheng Lishuang. A new type of rice transplanting machine of theoretical analysis and experimental research[D]. Harbin: Northeast Agricultural University, 2014. [ 3 ] 赵峰. 新型电磁液力式过载保护限制与力矩控制装置设计与应用研究[J]. 中国设备工程, 2022(16): 268-270. [ 4 ] 孙超. 液力式行走底盘的设计与研究[D]. 保定: 河北农业大学, 2013. Sun Chao. Design and research of hydraulic type walk chassis [D]. Baoding: Hebei Agricultural University, 2013. [ 5 ] 李贤哲, 张辉, 徐立友, 等. 液力机械复合传动拖拉机动力系统匹配特性研究[J]. 中国农机化学报, 2022, 43(4): 46-52. Li Xianze, Zhang Hui, Xu Liyou, et al. Research on power system matching characteristics of the hybrid hydraulic and mechanical tractor [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 46-52. [ 6 ] Yuko U, Jun Y, Kazunobu S, et al. Study on the development of the electric tractor: Specifications and traveling and tilling performance of a prototype electric tractor [J]. Engineering in Agriculture, Environment and Food, 2013, 6(4): 160-164. [ 7 ] 王加攀, 吴仁智, 秦磊, 等. 基于AMESim的拖拉机液压提升系统压力冲击研究[J]. 中国农机化学报, 2021, 42(2): 128-133. Wang Jiapan, Wu Renzhi, Qin Lei, et al. Research on pressure impact of tractor hydraulic lifting system based on AMESim [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 128-133. [ 8 ] Bhondave B, Ganesan T, Varma N, et al. Design and development of electro‑hydraulics hitch control for agricultural tractor [C]. SAE International, 2017. [ 9 ] Fernandez, Benjamin, Herrera. Self‑tuning regulator for a tractor with varying speed and hitch forces [J]. Computers and Electronics in Agriculture, 2018, 145: 182-288. [10] Langer T H. Model‑in‑the‑loop tuning of hitch control systems of agricultural tractors [C]. 75th VDI Internationale Tagung Landtechnik (Agricultural Engineering), 2017. [11] 张硕. 基于滑模变结构的重型拖拉机犁耕作业滑转率控制方法研究[D]. 北京: 中国农业大学, 2018. Zhang Shuo. Study on slip rate control of heavy tractor for ploughing based on sliding mode variable structure control [D]. Beijing: China Agricultural University, 2018. [12] 蔡鲁锋. 基于电控液压系统的拖拉机悬挂装置耕深自动控制研究[D]. 长春: 吉林大学, 2016. Cai Lufeng. research on the plowing depth automatic control of tractor hydraulic system based on electronic control [D]. Changchun: Jilin University, 2016. [13] 吴凯瑞. 拖拉机电液提升系统研究[D]. 杭州: 浙江大学, 2020. Wu Kairui. Research of electro‑hydraulic hitch system of tractor [D]. Hangzhou: Zhejiang University, 2020. [14] 王韦韦, 陈黎卿, 杨洋, 等. 农业机械底盘技术研究现状与展望[J]. 农业机械学报, 2021, 52(8): 1-15. Wang Weiwei, Chen Liqing, Yangyang, et al. Development and prospect of agricultural machinery chassis technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 1-15. [15] 蔡祖戈, 詹东安. 动力换挡变速器多离合器换挡控制策略研究[J]. 工程机械, 2022, 53(9): 8-13. [16] 王毅, 鲁力群, 孙萌, 等. CAN智能节点下拖拉机动力换挡变速器控制系统研究[J]. 重庆理工大学学报(自然科学), 2022, 36(2): 245-250. Wang Yi, Lu Liqun, Sun Meng, et al. Research on control system of tractor power shift transmission based on can intelligent node [J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36(2): 245-250. [17] 张明柱, 王界中, 王建华, 等. 提高燃油经济性的拖拉机变速控制策略[J]. 农业工程学报, 2020, 36(1): 82-89. Zhang Mingzhu, Wang Jiezhong, Wang Jianhua, et al. Speed changing control strategy for improving tractor fuel economy [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 82-89. [18] 曹允莲. 串联式拖拉机液压功率分流无级变速箱的设计[D]. 泰安: 山东农业大学, 2021. [19] 时元玲. 全液压顶驱电液比例容积调速系统研究[D]. 长春: 吉林大学, 2018. [20] 薛丽君, 赵业慧, 宋悦, 等. 无级变速和电传动农业作业机械现状研究[J]. 中国农机化学报, 2022, 43(7): 81-89. Xue Lijun, Zhao Yehui, Song Yue, et al. Research on the current situation of continuously variable transmission and electric drive technology [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 81-89. [21] 张超. 太阳能微耕机动力特性及其控制系统研究[D]. 南京: 南京农业大学, 2017. [22] 刘平义, 王振杰, 李海涛, 等. 农用底盘轮距可调式转向机构[J]. 农业机械学报, 2015, 46(6): 44-48, 120. Liu Pingyi, Wang Zhenjie, Li Haitao, et al. Design of steering mechanism with adjustable wheel track [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 44-48, 120. [23] 曲浩, 曲宝军, 周海安, 等. 叉车线控转向执行电机控制策略研究[J]. 山东理工大学学报(自然科学版), 2022, 36(6): 52-57. Qu Hao, Qu Baojun, Zhou Haian, et al. Research on control strategy of forklift steer by wire actuator [J]. Journal of Shandong University of Technology(Natural Science Edition), 2022, 36(6): 52-57. [24] 靳万里. 基于传感器解析冗余的智能汽车底盘域控制策略研究[D]. 长春: 吉林大学, 2022. [25] Michls J, Saxena A, Ng Ay. High speed obstacle avoidance using monocular vision and reinforcement learning[C]. Proceedings of the 22nd International Conference on Machine Learning. ACM, 2005. [26] Fleischmann P, Berns K. A stereo vision based obstacle detection system for agricultural applications [C]. Field and Service Robotics. Springer, Cham, 2016. [27] Brand C, Schuster M J, et al. Stereo‑vision based obstacle mapping for indoor/outdoor SLAM [C].2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2014. [28] 黄沛琛. 基于视觉与卫星定位的履带式果园机器人的导航系统研究[D]. 广州: 华南农业大学, 2019. [29] Kaizu Y, Choi J. Development of a tractor navigation system using augmented reality [J]. Engineering in Agriculture, Environment & Food, 2012. [30] 王伟康, 罗承铭, 张国忠, 等. 双电机履带式水稻收获机底盘自动导航系统设计与试验[J]. 华中农业大学学报(自然科学版), 2022, 41(2): 199-207. Wang Weikang, Luo Chengming, Zhang Guozhong, et al. Design and experiment of automatic navigation system for rice harvester with dual‑motor crawler chassis [J]. Journal of Huazhong Agricultural University (Natural Science Edition), 2022, 41(2): 199-207. [31] Ryerson A E F, Zhang Q. Vehicle path planning for complete field coverage using genetic algorithms [C]. CIGR Ejournal, 2007. [32] Karen L. A decision‑support system for analyzing tractor guidance technology [J]. Computers and Electronics in Agriculture, 2018. [33] 魏逸飞. 基于激光雷达和毫米波雷达融合的果园机器人导航系统研究[D]. 泰安: 山东农业大学, 2022. [34] 刘刚, 李笑, 康熙, 等. 基于GNSS的农田平整自动导航路径规划方法[J]. 农业机械学报, 2016, 47(z1): 21-29. Liu Gang, Li Xiao, Kang Xi, et al. Automatic navigation path planning method for land leveling based on GNSS [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(z1): 21-29. [35] 孙煜, 黄启宏, 赵博, 等. 基于RTK的农机机械智能辅助驾驶系统[J]. 电子技术与软件工程, 2021(19): 69-71. [36] 黄腾达. 基于北斗导航田间管理机辅助驾驶系统研究[D]. 长沙: 湖南农业大学, 2020. Huang Tengda. Research on field management machine assisted driving system based on beidou navigation[D]. Changsha: Hunan Agricultural University, 2020. (上接第 119 页) [40] Lertworasirikul S, Tipsuwan Y. Moisture content and water activity prediction of semi‑finished cassava crackers from drying process with artificial neural network [J]. Journal of Food Engineering, 2008, 84(1): 65-74. [41] 孟国栋, 彭桂兰, 罗传伟, 等. 花椒真空干燥特性分析及动力学模型研究[J]. 食品与发酵工业, 2018, 44(4): 89-96. Meng Guodong, Peng Guilan, Luo Chuanwei, et al. Vacuum drying characteristics and kinetics modeling study of Zanthoxylum bungeanum [J]. Food and Fermentation Industries, 2018, 44(4): 89-96. [42] 姜苗, 杨薇. 洋葱对流干燥特性及其神经网络模型的建立[J]. 食品研究与开发, 2013, 34(5): 14-18. Jiang Miao, Yang Wei. Drying characteristics and neural network model of onions during convection drying [J]. Food Research and Development, 2013, 34(5): 14-18. [43] 张欣, 张记, 彭桂兰, 等. 山药切片真空干燥特性及模型研究[J]. 食品工业科技, 2022, 43(4): 82-89. Zhang Xin, Zhang Ji, Peng Guilan, et al. Study on vacuum drying characteristics and model of yam slices [J]. Science and Technology of Food Industry, 2022, 43(4): 82-89. [44] 孙丽萍. 木材含水率在线检测融合体系及仿真技术研究[D]. 哈尔滨: 东北林业大学, 2008. [45] 胡晓锋. 食品干燥设备自动控制系统设计[J]. 食品工业, 2019, 40(12): 215-218. Hu Xiaofeng. Design of automatic control system for food drying equipment [J]. The Food Industry, 2019, 40(12): 215-218. [46] 李凯旋, 詹萍, 田洪磊, 等. 基于GA-BP神经网络的蒜香调味粉制备工艺优化[J]. 中国食品学报, 2020, 20(10): 150-159. Li Kaixuan, Zhan Ping, Tian Honglei, et al. Optimization of processing conditions of garlic flavoring powder based on GA-BP Neural Network [J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(10): 150-159. [47] 刘焕燕, 郑光耀, 王衍彬, 等. 基于BP神经网络的微波辅助提取无花果黄酮工艺优化[J]. 食品工业科技, 2017, 38(19): 197-202, 207. Liu Huanyan, Zheng Guangyao, Wang Yanbin, et al. Process parameter optimization of microwave assisted extraction of flavonoids from Ficus carica Linn based on BP neural network [J]. Science and Technology of Food Industry, 2017, 38 (19): 197-202, 207. |
[1] | Li Bin, Yang Xingyu, Liu Xiangxin, Gao Xiaolong. Research status and prospect of mechanized harvesting device for walnut [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(8): 1-7. |
[2] | Yu Chunhui, Chang Shuhui, , Zhang Fan, , Yao Jingfa, Meng Yu, Guo Yaqian. 面向大规模农田的农机跨区作业紧急调配研究 [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(8): 196-203. |
[3] | Xiong Zonghui, , He Zhiqi, Hu Pingping, Cao Dongsheng. Matching evaluation of supply chain procurement models for agricultural machinery products and services [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(8): 308-316. |
[4] | Qian Junnan, Feng Sang, Li Hang, Zhang Yong. Research on path tracking control algorithm of agricultural machinery based on extended Kalman filter [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(7): 215-221. |
[5] | Shan Haiyong, Yan Yini, Zhang Jin, Liu Xujie, Han Xiao, Liu Jian. Research progress on mechanization of soybean-corn belt composite planting [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(6): 42-52. |
[6] | Dai Hao, Li Aobo, Wei Junying. Impact of high standard farmland construction policy and farm machinery services on farm household income [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(6): 257-263. |
[7] | Wang Gangyi, Mi Yiming. Agricultural mechanization, agricultural mechanization services and technical efficiency of grain production: From the perspective of population aging [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(6): 284-293. |
[8] | Li Qiusheng, Fu Qing, Liu Xiaochun. Labor transfer, ownership of agricultural machinery and farmers productivity [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(6): 294-302. |
[9] | Zhang Jiani, Hou Guoqing, Xing Ling. Influence of the utilization level of agricultural machinery socialized service on farmers production efficiency: A case study of corn growers in Inner Mongolia [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(6): 320-329. |
[10] | Li Yanjing, Hu Zhongqiang, Zhang Yaping, Wang Jun, Xu Jianheng. Research progress of technology and equipment for mechanized harvest of wolfberry [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(5): 16-21. |
[11] | Wang Lingling, , Chen Warong, , Wu Sihao, , Huang Chang, , Zheng Yong, , Li Tuyu, . Optimal design and application of highefficiency rubber tapping technology based on the integration of agricultural machinery and agronomy [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(5): 22-28. |
[12] | Zhang Zejin, , Liang Ying, , Wang Yuqi, , Tang Li, . Experimental study on mechanized cultivation mode of facility tomato in Sichuan Basin [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(5): 64-68. |
[13] | Qinggui, Wu Kai, Zhou Hongbin. Fault diagnosis of agricultural machinery bearing based on hierarchical feature attention decoupling [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(5): 140-146. |
[14] | Zhu Ling, Zhang Renhui, Zhao Kai. Impact of farmers adoption of agricultural machinery services on grain production efficiency: Based on the adjustment effect of cultivated land endowment [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(4): 284-293. |
[15] | Liu Qin, Cao Guangqiao, Hu Lianglong, Wang Yina, Si Minghao. Analysis of innovation dynamics of agricultural machinery innovation subjects in Jiangsu [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(4): 302-310. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296