[1] Wang Jing, Zhao Bo, Zhou Hua. Rolling bear fault recognition based on improved sparse decomposition [J]. 2018 37th Chinese Control Conference(CCC), 2018: 676-680.
[2] Abbasion S, Rafsanjani A, Farshidianfar A, et al. Rolling element bearings multifault classification based on the wavelet denoising and support vector machine [J]. Mechanical Systems and Signal Processing, 2007, 21(7): 2933-2945.
[3] Han J H, Choi D J, Hong S K, et al. Motor fault diagnosis using CNN based deep learning algorithm considering motor rotating speed [C]. 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA). IEEE, 2019, 68(3): 440-445.
[4] Zhong Xu, Mo Wenxiong, Wang Yong, et al. Transformer fault diagnosis based on deep brief sparse autoencoder [C]. 中国自动化学会控制理论专业委员会, 中国自动化学会, 中国系统工程学会. 第三十八届中国控制会议论文集(5).上海系统科学出版社, 2019: 1087-1090.
[5] Lu P, Xu D P, Liu Y B. Study of fault diagnosis model based on multiclass wavelet support vector machines [C]. International Conference on Machine Learning & Cybernetics. IEEE, 2005, 7: 4319-4321.
[6] Zhu Jun, Chen Nan, Shen Changqing. A new deep transfer learning method for bearing fault diagnosis under different working conditions [J]. IEEE Sensors Journal, 2020, 20(15): 8394-8402.
[7] Vu D Q, Le N, Wang J C. Teaching yourself: A selfknowledge distillation approach to action recognition [J]. IEEE Access, 2021(9): 105711-105723.
[8] 邢晓松, 郭伟. 基于改进半监督生成对抗网络的少量标签轴承智能诊断方法[J]. 振动与冲击, 2022, 41(22): 184-192.
Xing Xiaosong, Guo Wei. Intelligent diagnosis method for bearings with few labelled samples based on an improved semisupervised learningbased generative adversarial network [J]. Journal of Vibration and Shock, 2022, 41(22): 184-192.
[9] 黄仲浩, 杨兴耀, 于炯, 等. 基于多阶段多生成对抗网络的互学习知识蒸馏方法[J]. 计算机科学, 2022, 49(10): 169-175.
Huang Zhonghao, Yang Xingyao, Yu Jiong, et al. Mutual learning knowledge distillation based on multistage multigenerative adversarial network [J]. Computer Science, 2022, 49(10): 169-175.
[10] Heo B, Lee M, Yun S, et al. Knowledge distillation with adversarial samples supporting decision boundary [C]. AAAI Conference on Artificial Intelligence. Honolulu, USA: AAAI, 2019: 3771-3778.
[11] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network [J]. Computer Science, 2015, 14(7): 38-39, 9.
[12] Papernot N, Mcdaniel P, Wu X, et al. Distillation as a Defense to adversarial perturbations against deep neural networks [C]. 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016.
[13] Jafari A, Rezagholizadeh M, Sharma P. Annealing knowledge distillation [J]. Association for Computational Linguistics, 2021: 2493-2504.
[14] 费霞. 基于对抗蒸馏与自动机器学习的神经网络压缩研究[D]. 西安: 西安电子科技大学, 2021.
Fei Xia. Research on deep neural network compression based on knowledge distillation with adversarial learning and automated machine learning [D]. Xian: Xidian University, 2021
[15] 陶启生. 基于CNN和迁移学习的轴承故障诊断方法研究[D]. 株洲: 湖南工业大学, 2021.
Tao Qisheng. Research on bearing fault diagnosis method based on CNN and transfer learning [D]. Zhuzhou: Hunan University of Technology, 2021.
[16] 赵振兵, 金超熊, 戚银城, 等. 基于动态监督知识蒸馏的输电线路螺栓缺陷图像分类[J]. 高电压技术, 2021, 47(2): 406-414.
Zhao Zhenbing, Jin Chaoxiong, Qi Yincheng, et al. Image classification of transmission line bolt defects based on dynamic supervision knowledge distillation [J]. High Voltage Engineering, 2021, 47(2): 406-414.
[17] Xu D, Xiao J, Zhao Z, et al. Selfsupervised spatiotemporal learning via video clip order prediction [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019: 10326-10335.
[18] Papernot N, Mcdaniel P, Goodfellow I, et al. Practical blackbox attacks against machine learning [J]. In: Proc. of the 2017 ACM on Asia Conf. on Computer and Communications Security, 2017: 506-519.
|