[1] 邱白晶, 闫润, 马靖, 等. 变量喷雾技术研究进展分析[J]. 农业机械学报, 2015, 46(12): 59-72.
Qiu Baijing, Yan Run, Ma Jing, et al. Research progress analysis of variable rate sprayer technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 59-72.
[2] 周良富, 薛新宇, 周立新, 等. 果园变量喷雾技术研究现状与前景分析[J]. 农业工程学报, 2017, 33(23): 80-92.
Zhou Liangfu, Xue Xinyu, Zhou Lixin, et al. Research situation and progress analysis on orchard variable rate spraying technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 80-92.
[3] Bongers F. Methods to assess tropical rain forest canopy structure: An overview [J]. Plant Ecology, 2001, 153(5): 263-277.
[4] Stuppy W, Maisano J, Colbert M, et al. Threedimensional analysis of plant structure using highresolution Xray computed tomography [J]. Trends in Plant Science, 2003, 8(1): 2-6.
[5] Giuliani R, Magnanini E, Fragassa C,et al.Ground monitoring the light shadow windows of a tree canopy to yield canopy light interception and morphological traits [J]. Plant Cell Environment, 2000, 23(3): 783-796.
[6] 夏春华, 施滢, 尹文庆. 基于TOF深度传感的植物三维点云数据获取与去噪方法[J]. 农业工程学报, 2018, 34(6): 168-174.
Xia Chunhua, Shi Ying, Yin Wenqing. Obtaining and denoising method of threedimensional point cloud data of plants based on TOF depth sensor [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6): 168-174.
[7] Hong Y, Heping Z, Richard D, et al. Evaluation of ultrasonic sensor for variablerate spray applications [J]. Computers and Electronics in Agriculture, 2011, 75(5): 36, 173-191.
[8] Kise M, Zhang Q. Development of a stereovision sensing system for 3D crop row structure mapping and tractor guidance [J]. Biosystems Engineering, 2008, 101(2): 191-198.
[9] Francisco R, Qin Zhang, John F, et al. Stereo vision threedimensional terrain maps for precision agriculture [J]. Computers and Electronics in Agriculture, 2008, 60(5): 133-143.
[10] Escolà A, Camp F, Solanelles F, et al. Variable dose rate sprayer prototype for dose adjustment in tree crops according to canopy characteristics measured with ultrasonic and laser LiDAR sensors [C]. In: Proceedings ECPASixth European Conference on Precision Agriculture, 2007: 563-571.
[11] Llorens J, Gil E, Llop J, et al. Ultrasonic and LiDAR sensors for electronic canopy characterization in vineyards: Advances to improve pesticide application methods [J]. Sensors, 2011, 65(11): 2177-2194.
[12] Rosell J, Llorens J, Sanz R, et al. Obtaining the threedimensional structure of tree orchards from remote 2D terrestrial LiDAR scanning [J]. Agricultural and Forest Meteorology, 2009, 149(12): 1505-1515.
[13] Rosell J R, Sanz R, Llorens J, et al. A tractormounted scanning LiDAR for the nondestructive measurement of vegetative volume and surface area of treerow plantations: A comparison with conventional destructive measurements [J]. Biosystems Engineering , 2009, 102(2): 128-134.
[14] Walklate P, Cross J, Richardson G, et al. Comparison of different spray volume deposition models using LiDAR measurements of apple orchards [J]. Biosystems Engineering, 2002, 82 (3): 253-267.
[15] 周梦维, 柳钦火, 刘强, 等. 基于机载小光斑全波形LiDAR的作物高度反演[J]. 农业工程学报, 2010, 26(8): 183-188.
Zhou Mengwei, Liu Qinhuo, Liu Qiang, et al. Inversion for crop height by smallfootprintwaveform airborne LiDAR[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8): 183-188.
[16] Ricardo S, Jordi L, Alexandre E, et al. Innovative LiDAR 3D dynamic measurement system to estimate fruittree leaf area [J]. Sensors, 2011, 11(3): 5769-5791.
[17] 张美娜, 吕晓兰, 邱威, 等. 基于三维激光点云的靶标叶面积密度计算方法[J]. 农业机械学报, 2017, 48(11): 172-179.
Zhang Meina, Lü Xiaolan, Qiu Wei, et al. Calculation method of leaf area density based on threedimensional laser point cloud [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 172-179.
[18] Sanza R, Rosella J, Llorensb J, et al. Relationship between tree row LiDARvolume and leaf area density for fruit orchards and vineyards obtained with a LiDAR 3D dynamic measurement system [J]. Agricultural and Forest Meteorology, 2013, 172(3): 153-162.
[19] Van D, Hoet D, Jonckheere W, et al. Influence of measurement setup of groundbased LiDAR for derivation of tree structure [J]. Agricultural & Forest Meteorology, 2006, 141(10): 147-160.
[20] Escolà A, Camp F, Solanelles F, et al. Variable dose rate sprayer prototype for dose adjustment in tree crops according to canopy characteristics measured with ultrasonic and laser LiDAR sensors [C]. In: Proceedings ECPASixth European Conference on Precision Agriculture, 2007: 563-571.
[21] Escolà A, Rosell P, Planas J, et al. Variable rate sprayer Part 1orchard prototype: Design, implementation and validation [J]. Computers and Electronics in Agriculture, 2013, 95(3): 122-135.
[22] 李龙龙, 何雄奎, 宋坚利, 等. 基于变量喷雾的果园自动仿形喷雾机的设计与试验[J]. 农业工程学报, 2017, 33(1): 70-76.
Li Longlong, He Xiongkui, Song Jianli, et al. Design and experiment of automatic profiling orchard sprayer based on variable air volume and flow rate [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 70-76.
[23] 周梦维, 柳钦火, 刘强, 等. 机载激光雷达的作物叶面积指数定量反演[J]. 农业工程学报, 2011, 27(4): 207-213.
Zhou Mengwei, Liu Qinhuo, Liu Qiang, et al. Inversion of leaf area index based on smallfootprint waveform airborne LiDAR [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(4): 207-213.
|