[1] 宋彩英, 覃志豪. 吉安市井冈蜜柚产业发展研究[J]. 中国农业资源与区划, 2014, 35(5): 113-116, 122.
Song Caiying, Qin Zhihao. Study on the development of Jinggang candied pomelo industry of Jian City [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2014, 35(5): 113-116, 122.
[2] 江西省统计局. 江西统计年鉴[M]. 北京: 中国统计出版社, 2021.
[3] Liang L, Luo X, Liu Z, et al. Habitat selection and prediction of the spatial distribution of the Chinese horseshoe bat (R. sinicus) in the Wuling Mountains [J]. Environmental Monitoring and Assessment, 2019, 191: 1-15.
[4] 王浩淼, 宋苗语, 李翔, 等. 无人机高光谱遥感监测葡萄长势与缺株定位[J]. 园艺学报, 2021, 48(8): 1626-1634.
Wang Haomiao, Song Miaoyu, Li Xiang, et al. High efficient grapevine growth monitor and inlane deficiency localization by UAV hyperspectral remote sensing [J]. Acta Horticulturae Sinica, 2021, 48(8): 1626-1634.
[5] 孙逸飞, 柳平增, 张艳, 等. 基于Sentinel-2A遥感影像的潍坊市冬小麦种植面积提取研究[J]. 中国农机化学报, 2022, 43(7): 98-105.
Sun Yifei, Liu Pingzeng, Zhang Yan, et al. Research on extraction of winter wheat planting area in Weifang City based on Sentinel-2A remote sensing image [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 98-105.
[6] Fletcher R S. Using vegetation indices as input into random forest for soybean and weed classification [J]. American Journal of Plant Sciences, 2016, 7(15): 2186-2198.
[7] Luo X, Liang L, Liu Z, et al. Habitat suitability evaluation of the Chinese Horseshoe Bat (R. sinicus) in the Wuling mountain area based on MAXENT Modelling [J]. Polish Journal of Environmental Studies, 2020, 29(2).
[8] 李福根, 段玉林, 史云, 等. 利用单次无人机影像的果树精准识别方法[J]. 中国农业信息, 2019, 31(4): 10-22.
Li Fugen, Duan Yulin, Shi Yun, et al. Accurate detection of fruit trees using a set of unmanned aerial vehicle(UAV)imageries [J]. China Agricultural Informatics, 2019, 31(4): 10-22.
[9] Wan L, Li Y, Cen H, et al. Combining UAV-based vegetation indices and image classification to estimate flower number in oilseed rape [J]. Remote Sensing, 2018, 10(9): 1484.
[10] 汪沛, 罗锡文, 周志艳, 等. 基于微小型无人机的遥感信息获取关键技术综述[J]. 农业工程学报, 2014, 30(18): 1-12.
Wang Pei, Luo Xiwen, Zhou Zhiyan, et al. Key technology for remote sensing information acquisition based on micro UAV [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18): 1-12.
[11] Wu J T, Yang G J, Han L, et al. Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network [J]. Remote Sensing, 2019, 11(6): 691.
[12] 束美艳, 李世林, 魏家玺, 等. 基于无人机平台的柑橘树冠信息提取[J]. 农业工程学报, 2021, 37(1): 68-76.
Shu Meiyan, Li Shilin, Wei Jiaxi, et al. Extraction of citrus crown parameters using UAV platform [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(1): 68-76.
[13] Panu S, Preesan R. Oil palm tree detection with high resolution multispectral satellite imagery [J]. Remote Sensing, 2014, 6(10): 9749-9774.
[14] 江洪, 汪小钦, 吴波, 等. 地形调节植被指数构建及在植被覆盖度遥感监测中的应用[J]. 福州大学学报(自然科学版), 2010, 38(4): 527-532.
Jiang Hong, Wang Xiaoqin, Wu Bo, et al. A topographyadjusted vegetation index (TAVI) and its application in vegetation fraction monitoring [J]. Journal of Fuzhou University (Natural Science), 2010, 38(4): 527-532.
[15] Victoria G D, Pilar H, Ignacio S, et al. Using highresolution hyperspectral and thermal airborne imagery to assess physiological condition in the context of wheat phenotyping [J]. Remote Sensing, 2015, 7(10): 13586-13605.
[16] Shah S H, Angel Y, Houborg R, et al. A random forest machine learning approach for the retrieval of leaf chlorophyll content in wheat [J]. Remote Sensing, 2019, 11(8): 920.
[17] Woebbecke D M, Meyer G E, Von Bargen K, et al. Plant species identification, size, and enumeration using machine vision techniques on nearbinary images [C]. Optics in Agriculture and Forestry, SPIE, 1993, 1836: 208-219.
[18] Louhaichi M, Borman M M, Johnson D E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat [J]. Geocarto International, 2001, 16(1): 65-70.
[19] Gitelson A A, Zur Y, Chivkunova O B, et al. Assessing carotenoid content in plant leaves with reflectance spectroscopy [J]. Photochemistry and Photobiology, 2002, 75(3): 272-281.
[20] 谭文学, 赵春江, 吴华瑞, 等. 基于弹性动量深度学习神经网络的果体病理图像识别[J]. 农业机械学报, 2015, 46(1): 20-25.
Tan Wenxue, Zhao Chunjiang, Wu Huarui, et al. A deep learning network for recognizing fruit pathologic images based on flexible momentum [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 20-25.
[21] 孙钰, 周焱, 袁明帅, 等. 基于深度学习的森林虫害无人机实时监测方法[J]. 农业工程学报, 2018, 34(21):74-81.
Sun Yu, Zhou Yan, Yuan Mingshuai, et al. UAV realtime monitoring for forest pest based on deep learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 74-81.
[22] 沈萍, 赵备. 基于深度学习模型的花卉种类识别[J]. 科技通报, 2017, 33(3): 115-119.Shen Ping, Zhao Bei. Automatic classification of flowers based on deep learning model [J]. Bulletin of Science and Technology, 2017, 33(3): 115-119.
[23] 王术波, 韩宇, 陈建, 等. 基于深度学习的无人机遥感生态灌区杂草分类[J]. 排灌机械工程学报, 2018, 36(11): 1137-1141.
Wang Shubo, Han Yu, Chen Jian, et al. Weed classification of remote sensing by UAV in ecological irrigation areas based on deep learning [J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(11): 1137-1141.
[24] Houborg R, McCabe M F. A hybrid training approach for leaf area index estimation via Cubist and random forests machinelearning [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 135: 173-188.
[25] Liang L, Sun Q, Luo X, et al. Longterm spatial and temporal variations of vegetative drought based on vegetation condition index in China [J]. Ecosphere, 2020, 8(8): e01919.
[26] Shao G, Tang L, Liao J. Overselling overall map accuracy misinforms about research reliability [J]. Landscape Ecology, 2019, 34: 2487-2492.
[27] 刘云萌, 刘云霞, 曾广旭, 等. 基于GIS的吉安地区井冈蜜柚特色果业种植气候区划[J]. 江西农业学报, 2015, 27(6): 130-133.
Liu Yunmeng, Liu Yunxia, Zeng Guangxu, et al. Climatic regionalization of Jinggang pomelo planting in Jian area based on GIS [J]. Acta Agriculturae Jiangxi, 2015, 27(6): 130-133.
[28] 万祖毅. 基于无人机遥感的柑橘果树信息提取及应用研究[D]. 重庆: 西南大学, 2020.Wan Zuyi. Extraction and application of citrus fruit tree information based on UAV remote sensing [D]. Chongqing: Southwest University, 2020.
[29] 吴强建, 肖委明, 赵晓东, 等. 江西井冈蜜柚种植区果园土壤肥力现状及区域分布特征[J]. 农业资源与环境学报, 2022(5): 1025-1032.
Wu Qiangjian, Xiao Weiming, Zhao Xiaodong, et al. Status, spatial distribution, and fertility of soil in pomelo orchards in Jinggang, Jiangxi Province [J]. Journal of Agricultural Resources and Environment, 2022(5): 1025-1032.
|