Journal of Chinese Agricultural Mechanization ›› 2024, Vol. 45 ›› Issue (2): 227-234.DOI: 10.13733/j.jcam.issn.2095-5553.2024.02.033
Previous Articles Next Articles
Zhao Shengli1, 2, 3, Wang Guobin1, 2, 3, Hu Lianbin1, 2, 3, Xu Haiyu1, 2, 3, Gong Daocai1, 2, 3, Lan Yubin1, 2, 3
Online:
2024-02-15
Published:
2024-03-19
赵胜利1, 2, 3,王国宾1, 2, 3,胡连槟1, 2, 3,徐海钰1, 2, 3,巩道财1, 2, 3,兰玉彬1, 2, 3
基金资助:
CLC Number:
Zhao Shengli, , , Wang Guobin, , , Hu Lianbin, , , Xu Haiyu, , , Gong Daocai, , , Lan Yubin, , . Estimation of cotton growth parameters and yield based on UAV multi-spectral remote sensing[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(2): 227-234.
赵胜利, , , 王国宾, , , 胡连槟, , , 徐海钰, , , 巩道财, , , 兰玉彬, , . 基于无人机多光谱遥感的棉花生长参数和产量估算[J]. 中国农机化学报, 2024, 45(2): 227-234.
[1] 刘文静, 范永胜, 董彦琪, 等. 我国棉花生产现状分析及建议[J]. 中国种业, 2022(1): 21-25. Liu Wenjing, Fan Yongsheng, Dong Yanqi, et al. Analysis and suggestions on the current situation of cotton production in China [J]. China Seed Industry, 2022(1): 21-25. [2] 苑严伟, 白圣贺, 牛康, 等. 棉花种植机械化关键技术与装备研究进展[J]. 农业工程学报, 2023, 39(6): 1-11. Yuan Yanwei, Bai Shenghe, Niu Kang, et al. Research progress in the key technologies and equipment for cotton planting mechanization [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(6): 1-11. [3] Wang G, Lan Y, Qi H, et al. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: Effect of spray volume on deposition and the control of pests and disease in wheat [J]. Pest Management Science, 2019, 75(6): 1546-1555. [4] Xu W, Chen P, Zhan Y, et al. Cotton yield estimation model based on machine learning using time series UAV remote sensing data [J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104. [5] 刘涛, 张寰, 王志业, 等. 利用无人机多光谱估算小麦叶面积指数和叶绿素含量[J]. 农业工程学报, 2021, 37(19): 65-72. Liu Tao, Zhang Huan, Wang Zhiye, et al. Estimation of the leaf area index and chlorophyll content of wheat using UAV multi-spectrum images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19): 65-72. [6] Muharam F, Bronson K, Maas S, et al. Inter-relationships of cotton plant height, canopy width, ground cover and plant nitrogen status indicators [J]. Field Crops Research, 2014, 169: 58-69. [7] 闫成川, 曲延英, 陈全家, 等. 基于无人机多光谱影像的棉花SPAD值及叶片含水量估测[J]. 农业工程学报, 2023, 39(2): 61-67. Yan Chengchuan, Qu Yanying, Chen Quanjia, et al. Estimation of cotton SPAD value and leaf water content based on UAV multispectral images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(2): 61-67. [8] Li J, Wijewardane N K, Ge Y, et al. Improved chlorophyll and water content estimations at leaf level with a hybrid radiative transfer and machine learning model [J]. Computers and Electronics in Agriculture, 2023, 206: 107669. [9] 孟沌超, 赵静, 兰玉彬, 等. 基于无人机可见光影像的玉米冠层SPAD反演模型研究[J]. 农业机械学报, 2020, 51(S2): 366-374. Meng Dunchao, Zhao Jing, Lan Yubin, et al. SPAD inversion model of corn canopy based on UAV visible light image [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 366-374. [10] Ferencz C, Bognar P, Lichtenberger J, et al. Crop yield estimation by satellite remote sensing [J]. International Journal of Remote Sensing, 2004, 25(20): 4113-4149. [11] 张静, 郭思梦, 韩迎春, 等. 基于无人机RGB图像的棉花产量估算[J]. 中国农业科技导报, 2022, 24(11): 112-120. Zhang Jing, Guo Simeng, Han Yingchun, et al. Estimation of cotton yield based on unmanned aerial vehicle RGB images [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 112-120. [12] Wahab I, Hall O, Jirstrm M. Remote sensing of yields: Application of UAV imagery-derived NDVI for estimating maize vigor and yields in complex farming systems in sub-saharan africa [J]. Drones, 2018, 2(3): 28. [13] Sumesh K, Ninsawat S, Som-ard J. Integration of RGB-based vegetation index, crop surface model and object-based image analysis approach for sugarcane yield estimation using unmanned aerial vehicle [J]. Computers and Electronics in Agriculture, 2021, 180: 105903. [14] Laliberte A S, Goforth M A, Steele C M, et al. Multispectral remote sensing from unmanned aircraft: Image processing workflows and applications for rangeland environments [J]. Remote Sensing, 2011, 3(11): 2529-2551. [15] 冯海宽, 陶惠林, 赵钰, 等. 利用无人机高光谱估算冬小麦叶绿素含量[J]. 麦类作物学报, 2022, 42(11):3575-3580. Feng Haikuan, Tao Huilin, Zhao Yu, et al. Estimation of chlorophyll content in winter wheat based on UAV hyperspectral [J]. Spectroscopy and Spectral Analysis, 2022, 42(11): 3575-3580. [16] Almeida C T d, Galvo L S, Arago L E d O C e, et al. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms [J]. Remote Sensing of Environment, 2019, 232. [17] Du X, Wan L, Cen H, et al. Multi-temporal monitoring of leaf area index of rice under different nitrogen treatments using UAV images [J]. International Journal of Precision Agricultural Aviation, 2020, 3(1). [18] Ahmed O S, Shemrock A, Chabot D, et al. Hierarchical land cover and vegetation classification using multispectral data acquired from an unmanned aerial vehicle [J]. International journal of remote sensing, 2017, 38(8-10): 2037-2052. [19] Shi G, Du X, Du M, et al. Cotton yield estimation using the remotely sensed cotton boll index from UAV images [J]. Drones, 2022, 6(9): 254. [20] Yang Q, Shi L, Han J, et al. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images [J]. Field Crops Research, 2019, 235: 142-153. [21] Chen P, Douzals J P, Lan Y, et al. Characteristics of unmanned aerial spraying systems and related spray drift: A review [J]. Frontiers in Plant Science, 2022: 2726. [22] 邵国敏, 王亚杰, 韩文霆. 基于无人机多光谱遥感的夏玉米叶面积指数估算方法[J]. 智慧农业(中英文), 2020, 2(3): 118-128. Shao Guomin, Wang Yajie, Han Wenting, et al. Estimation method of leaf area index for summer maize using UAV-based multispectral remote sensing [J]. Smart Agriculture, 2020, 2(3): 118-128. [23] 张恒瑞, 段喜明, 魏征, 等. 基于无人机多光谱遥感的华北地区夏玉米LAI监测[J]. 山西农业科学, 2021, 49(5): 608-614. Zhang Hengrui, Duan Ximing, Wei Zheng, et al. Study on LAI monitoring of summer corn in north China based on UAV multispectral remote sensing [J]. Journal of Shanxi Agricultural Sciences, 2021, 49(5): 608-614. [24] 魏青, 张宝忠, 魏征, 等. 基于无人机多光谱遥感的冬小麦冠层叶绿素含量估测研究[J]. 麦类作物学报, 2020, 40(3): 365-372. Wei Qing, Zhang Baozhong, Wei Zheng, et al. Estimation of canopy chlorophyll content in winter wheat by UAV multispectral remote sensing [J]. Journal of Triticeae Crops, 2020, 40(3): 365-372. [25] 陈俊英, 陈硕博, 张智韬, 等. 无人机多光谱遥感反演盛花期棉花光合参数研究[J]. 农业机械学报, 2018, 49(10): 230-239. Chen Junying, Chen Shuobo, Zhang Zhitao, et al. Investigation on photosynthetic parameters of cotton during budding period by multi-spectral remote sensing of unmanned aerial vehicle [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 230-239. [26] Su J, Liu C, Coombes M, et al. Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery [J]. Computers and Electronics in Agriculture, 2018, 155: 157-166. [27] Gao C, Ji X, He Q, et al. Monitoring of wheat fusarium head blight on spectral and textural analysis of UAV multispectral imagery [J]. Agriculture, 2023, 13(2): 293. [28] Shu Meiyan, Dong Qizhou, Fei Shuaipeng, et al. Improved estimation of canopy water status in maize using UAV-based digital and hyperspectral images [J]. Computers and Electronics in Agriculture, 2022, 197: 106982. [29] Hassan M A, Yang M, Rasheed A, et al. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform [J]. Plant Science, 2019, 282: 95-103. [30] 罗小波, 谢天授, 董圣贤. 基于无人机多光谱影像的柑橘冠层叶绿素含量反演[J]. 农业机械学报, 2023, 54(4): 198-205. Luo Xiaobo, Xie Tianshou, Dong Shengxian. Estimation of citrus canopy chlorophyll based on UAV multispectral images [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(4): 198-205. |
[1] | Liu Jinbao, Zheng Xuan, Yang Huaijun, Li Fan, Wang Zilong, Zhang Luyun. Design and experiment of bionic drag reduction plough in cotton field based on discrete element method [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(2): 13-19. |
[2] | Lu Bo, Ni Xiangdong, Li Kezhi, Li Shufeng, Qi Qingzheng, Shao Wenping. Simulation analysis and experiment of seed discharge performance of high speed hole seeder based on EDEM [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(2): 49-54. |
[3] | Wang Bin, Dong Xuehu, Cao Wenlong. Research on highpurity cleaning and intelligent yield measurement device for fresh corn harvester [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 109-116. |
[4] | Yang Dongyan, Wang Dan, Sang Ting, Zhao Yunxia, Song Weitang. Characteristics of group light environment and yield distribution of tomato under eastwest ridge pattern in solar greenhouse [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(9): 51-58. |
[5] | Li Huan, Yu Guoxin, Wang Guirong. Study on cotton production efficiency and its temporal and spatial differentiation in Xinjiang [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 243-249. |
[6] | Guo Zhaofeng, , Ban Ting, , Ma Yan, , Shen Weiqiang, . Experiment and parameter optimization of 11JF-1.2 cotton straw feedingfermentation machine [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 111-117. |
[7] | Li Minggang, Yang Huiqing. Cotton stalk chopping and returning to field based on response surface method [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 10-18. |
[8] | Li Yanzhou, He Yanzhou, , Qin Feng, , Qian Wanqiang, Wu Mei, Qiao Xi, . Identification of Spartina alterniflora based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 159-166. |
[9] | Xie Qing, , Kong Fanting, , Shi Lei, , Chen Changlin, , Wu Teng, , Sun Yongfei, . Research progress on key technologies of cotton mechanical topping [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 28-34. |
[10] | Zhao Chenxiao, Zhao Dajun, Chen Yulan. Analysis of impact of target price policy on green total factor productivity of cotton: Based on the MalmquistTobit model of 12 major cottonproducing provinces panel data [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(11): 258-264. |
[11] | Wu Li, Zou Limin, Zhou Ke. Prediction and analysis of influencing factors of grain yield in Chongqing based on machine learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(10): 185-193. |
[12] | Qian Rui, Wu Dake, Yang Mingjin.. Optimization of flow field uniformity in cotton drying room based on Fluent [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 152-161. |
[13] | Wu Cuiqing, Sun Jingxin, Wu Xinhui, Wang Can, Zhao Yuhang.. Effects of high voltage electric field pretreatment on growth potential and yield of miscellaneous grain seeds [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(8): 75-81. |
[14] | Guo Wei, Gao Chunfeng, Qiao Hongbo, Li Chengwei, Zhang Feng, Zhang Hui.. Severity monitoring of cotton spider mite based on UAV digital image [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(8): 143-150. |
[15] | Lu Haonan, Zhao Yongman, Min Yu, Wu Zhisheng, Zhou Xue, Wei Zikai. . Selection of cotton picker based on entropy weight GRA-TOPSIS under mixed index conditions [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 222-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296