[1] 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
Zhao Chunjiang. Stateoftheart and recommended developmental strategic objectives of smart agriculture [J]. Smart Agriculture, 2019, 1(1): 1-7.
[2] 黑龙江省佳木斯农业学校, 江苏省苏州农业学校. 果树栽培学总论[M]. 北京: 中国农业出版社, 2009.
[3] 王立扬, 张瑜, 沈群, 等. 基于改进型LeNet-5的苹果自动分级方法[J]. 中国农机化学报, 2020, 41(7): 105-110.
Wang Liyang, Zhang Yu, Shen Qun, et al. Automatic apple grading method based on improved LeNet-5 [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 105-110.
[4] 王丹丹, 宋怀波, 何东健. 苹果采摘机器人视觉系统研究进展[J]. 农业工程学报, 2017, 33(10): 59-69.
Wang Dandan, Song Huaibo, He Dongjian. Research advance on vision system of apple picking robot [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 59-69.
[5] Zhou R, Damerow L, Sun Y, et al. Using color features of cv. ‘Gala’ apple fruits in an orchard in image processing to predict yield [J]. Precision Agriculture, 2012, 13(5): 568-580.
[6] 熊俊涛, 刘振, 汤林越, 等. 自然环境下绿色柑橘视觉检测技术研究[J]. 农业机械学报, 2018, 49(4): 45-52.
Xiong Juntao, Liu Zhen, Tang Linyue, et al. Visual detection technology of green citrus under natural environment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 45-52.
[7] Tian Yunong, Yang Guodong, Wang Zhe, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model [J]. Computer & Electronics in Agriculture, 2019, 157: 417-426.
[8] 赵德安, 吴任迪, 刘晓洋, 等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3): 164-173.
Zhao Dean, Wu Rendi, Liu Xiaoyang, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 164-173.
[9] Ge Z, Liu S, Wang F, et al. YOLOX: Exceeding YOLO series in 2021 [J]. arXiv, 2021.
[10] Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection [C]. Proceedings The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2017: 2117-2125.
[11] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design [C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[12] Rezatofighi H, Tsoi N, Gwak JY, et al. Generalized intersection over union: A metric and a loss for bounding box regression [C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
[13] Hani N, Roy P, Isler V. Minne apple: A benchmark dataset for apple detection and segmentation [J]. IEEE Robotics and Automation Letters. 2020, 5(2): 852-858.
[14] 齐锐丽, 陈曼龙, 杨宗浩, 等. 基于HSV模型与改进的OTSU算法花椒图像分割[J]. 中国农机化学报, 2019, 40(11): 155-160.
Qi Ruili, Chen Manlong, Yang Zonghao, et al. Image segmentation of peppercorns based on HSV model and improved OTSU algorithm [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11): 155-160.
[15] 许迎春, 刘英, 范开欣, 等. 基于线扫描及其参数空间的圆形果实识别[J]. 中国农机化学报, 2018, 39(9): 51-55.
Xu Yingchun, Liu Ying, Fan Kaixin, et al. Circular fruit recognition based on line scan and its parameter space [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(9): 51-55.
|