Journal of Chinese Agricultural Mechanization ›› 2022, Vol. 43 ›› Issue (11): 172-181.DOI: 10.13733/j.jcam.issn.2095-5553.2022.11.024
Previous Articles Next Articles
Wei Yana, Wang Zhibin, Qiao Xiaojun, Zhao Chunjiang.
Online:
2022-11-15
Published:
2022-10-25
卫雅娜1, 2,王志彬2,乔晓军2,赵春江1, 2
基金资助:
CLC Number:
Wei Yana, Wang Zhibin, Qiao Xiaojun, Zhao Chunjiang.. Lightweight rice disease identification method based on attention mechanism and EfficientNet [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 172-181.
卫雅娜, 王志彬, 乔晓军, 赵春江, . 基于注意力机制与EfficientNet的轻量化水稻病害识别方法[J]. 中国农机化学报, 2022, 43(11): 172-181.
[1] 朱德峰, 王亚梁. 全球水稻生产时空变化特征分析[J]. 中国稻米, 2021, 27(1): 7-8, 13. Zhu Defeng, Wang Yaliang. Analysis of characteristics of temporal and spatial variation of rice production in the world [J]. China Rice, 2021, 27(1): 7-8, 13. [2] 刘万才, 刘振东, 黄冲, 等. 近10年农作物主要病虫害发生危害情况的统计和分析[J]. 植物保护, 2016, 42(5): 1-9, 46. Liu Wancai, Liu Zhendong, Huang Chong, et al. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years [J]. Plant Protection, 2016, 42(5): 1-9, 46. [3] 王林柏, 张博, 姚竟发, 等. 基于卷积神经网络马铃薯叶片病害识别和病斑检测[J]. 中国农机化学报,2021, 42(11): 122-129. Wang Linbai, Zhang Bo, Yao Jingfa, et al. Potato leaf disease recognition and potato leaf disease spot detection based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 122-129. [4] 项小东, 翟蔚, 黄言态, 等. 基于Xception-CEMs神经网络的植物病害识别[J]. 中国农机化学报, 2021, 42(8): 177-186. Xiang Xiaodong, Zhai Wei, Huang Yantai, et al. Plant disease recognition based on Xception-CEMs neural network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 177-186. [5] 黄双萍, 齐龙, 马旭, 等. 基于高光谱成像的水稻穗瘟病害程度分级方法[J]. 农业工程学报, 2015, 31(1): 212-219. Huang Shuangping, Qi Long, Ma Xu, et al. Grading method of rice panicle blast severity based on hyperspectral image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(1): 212-219. [6] 樊湘鹏, 周建平, 许燕, 等. 基于改进卷积神经网络的复杂背景下玉米病害识别[J]. 农业机械学报, 2021, 52(3): 210-217. Fan Xiangpeng, Zhou Jianping, Xu Yan, et al. Corn disease recognition under complicated background based on improved convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 210-217. [7] 杨森, 冯全, 张建华, 等. 基于深度学习与复合字典的马铃薯病害识别方法[J]. 农业机械学报, 2020, 51(7): 22-29. Yang Sen, Feng Quan, Zhang Jianhua, et al. Identification method for potato disease based on deep learning and composite dictionary [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 22-29. [8] 刘文波, 叶涛, 李颀. 基于改进SOLO v2的番茄叶部病害检测方法[J]. 农业机械学报, 2021, 52(8): 213-220. Liu Wenbo, Ye Tao, Li Qi. Tomato leaf disease detection method based on improved SOLO v2 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 213-220. [9] 鲍文霞, 黄雪峰, 胡根生, 等. 基于改进卷积神经网络模型的玉米叶部病害识别(英文)[J]. 农业工程学报, 2021, 37(6): 160-167. Bao Wenxia, Huang Xuefeng, Hu Gensheng, et al. Identification of maize leaf diseases using improved convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 160-167. [10] 马浚诚, 杜克明, 郑飞翔, 等. 基于卷积神经网络的温室黄瓜病害识别系统[J]. 农业工程学报, 2018, 34(12): 186-192. Ma Juncheng, Du Keming, Zheng Feixiang, et al. Disease recognition system for greenhouse cucumbers based on deep convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 186-192. [11] 苏仕芳, 乔焰, 饶元. 基于迁移学习的葡萄叶片病害识别及移动端应用[J]. 农业工程学报, 2021, 37(10): 127-134. Su Shifang, Qiao Yan, Rao Yuan. Recognition of grape leaf diseases and mobile application based on transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(10): 127-134. [12] Jiang Z, Dong Z, Jiang W, et al. Recognition of rice leaf diseases and wheat leaf diseases based on multitask deep transfer learning [J]. Computers and Electronics in Agriculture, 2021, 186: 106184. [13] Waheed A, Goyal M, Gupta D, et al. An optimized dense convolutional neural network model for disease recognition and classification in corn leaf [J]. Computers and Electronics in Agriculture, 2020, 175: 105456. [14] 黄林生, 罗耀武, 杨小冬, 等. 基于注意力机制和多尺度残差网络的农作物病害识别[J]. 农业机械学报, 2021, 52(10): 264-271. Huang Linsheng, Luo Yaowu, Yang Xiaodong, et al. Crop disease recognition based on attention mechanism and multiscale residual network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 264-271. [15] Mohanty S P, Hughes D P, Salath M. Using deep learning for imagebased plant disease detection [J]. Frontiers in Plant Science, 2016, 7: 1419. [16] 郭小清, 范涛杰, 舒欣. 基于改进Multi-Scale AlexNet的番茄叶部病害图像识别[J]. 农业工程学报, 2019, 35(13): 162-169. Guo Xiaoqing, Fan Taojie, Shu Xin. Tomato leaf diseases recognition based on improved Multi-Scale AlexNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 162-169. [17] Gao R, Wang R, Feng L, et al. Dualbranch, efficient, channel attentionbased crop disease identification [J]. Computers and Electronics in Agriculture, 2021, 190: 106410. [18] 王东方, 汪军. 基于迁移学习和残差网络的农作物病害分类[J]. 农业工程学报, 2021, 37(4): 199-207. Wang Dongfang, Wang Jun. Crop disease classification with transfer learning and residual networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 199-207. [19] Atila , Ucar M, Akyol K, et al. Plant leaf disease classification using EfficientNet deep learning model [J]. Ecological Informatics, 2021, 61: 101182. [20] Zhang P, Yang L, Li D. EfficientNet-B4-Ranger: A novel method for greenhouse cucumber disease recognition under natural complex environment [J]. Computers and Electronics in Agriculture, 2020, 176: 105652. [21] Bao W, Yang X, Liang D, et al. Lightweight convolutional neural network model for field wheat ear disease identification [J]. Computers and Electronics in Agriculture, 2021, 189: 106367. [22] Sandler M, Howard A, Zhu M, et al. MobileNetV2: Inverted residuals and linear bottlenecks [C]. Conference on Computer Vision and Pattern Recognition, 2018: 18-23. [23] Harshanand B A, Sangaiah A K. Comprehensive analysis of deep learning methodology in classification of leukocytes and enhancement using swish activation units [J]. Mobile Networks and Applications, 2020, 25(6): 2302-2320. [24] Wei L W, Fu S, Ran Z T H, et al. Verifying ReLU neural networks from a model checking perspective [J]. Journal of Computer Science and Technology, 2020, 35(6): 1365-1381. [25] Bera S, Shrivastava V K. Analysis of various optimizers on deep convolutional neural network model in the application of hyperspectral remote sensing image classification [J]. International Journal of Remote Sensing, 2020, 41: 2664. [26] AlWaisy A S, Qahwaji R, Ipson S, et al. A multibiometric iris recognition system based on a deep learning approach [J]. Pattern Analysis and Applications, 2018, 21(3): 783-802. [27] Hinton G, Srivastava N, Swersky K. Rmsprop: Divide the gradient by a running average of its recent magnitude [J]. Neural networks for machine learning, Coursera lecture 6e, 2012, 13: 26-30. [28] Chen J, Chen J, Zhang D, et al. Using deep transfer learning for imagebased plant disease identification [J]. Computers and Electronics in Agriculture, 2020, 173: 105393. [29] 黄双萍, 孙超, 齐龙, 等. 基于深度卷积神经网络的水稻穗瘟病检测方法[J]. 农业工程学报, 2017, 33(20): 169-176. Huang Shuangping, Sun Chao, Qi Long. Rice panicle blast identification method based on deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 169-176. [30] Cruz A, Ampatzidis Y, Pierro R, et al. Detection of grapevine yellows symptoms in Vitis vinifera L. with artificial intelligence [J]. Computers and Electronics in Agriculture, 2019, 157: 63-76. [31] Waheed A, Goyal M, Gupta D, et al. An optimized dense convolutional neural network model for disease recognition and classification in corn leaf [J]. Computers and Electronics in Agriculture, 2020, 175: 105456. |
[1] | Wang Xingwang, Zheng Hanyuan, Fan Huifeng. Fan Huifeng. Research and application of rice FTAIGSCMPP pest control model [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 65-74. |
[2] | Liang Qiuyan, Zhang Xiaoling, Ge Yiyuan, Chi Jia. Research on prediction model of quantitative seed supply of super rice [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 148-154. |
[3] | . Detection of seed rate of japonica rice printing planter based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 194-199. |
[4] | Chen Lintao, Xue Junxiang, Ma Xu, , Liu Zhaoxiang, Yang Wentao, Liao Jianwang. Improved design and experiment of the intelligent doublefilling hole roller hybrid rice seeder [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(6): 8-17. |
[5] | Xu Feng, Liu Depu, Peng Junming, He Lin. Influencing factors and key technical measures of mechanization development of double cropping rice in South China [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 1-7. |
[6] | He Yushuang, Wang Zhuo, Wang Xiangping, Xiao Jin, Luo Youyi, Zhang Junfeng.. Research progress of deep learning in crop disease image recognition [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 148-155. |
[7] | Li Huiyan, Zhang Shurong, Jiang Zhiwei.. Research on prewarning of fresh milk price fluctuation based on modern urban agriculture: A case study of Tianjin [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 222-229. |
[8] | Wang Ying, Wang Feng, Li Wei, Wang Yanyan, Wang Yingbiao, Luo Xin.. Study on improved YOLOv5 algorithm for fruit and vegetable detection in complex environments [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 185-191. |
[9] | Weng Xiaoxing, Xu Jinda, Zhao Jin, Huang Yun, Bian Xiaodong, Wang Jianjun. . Study on seed production and pollination of Indicajaponica hybrid rice assisted by multirotor UAV [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 24-29. |
[10] | Wang Yuliang, Li Hanqing, Chen Zhaoying, Shi Shaojun, Chen Guofang, Wang Jinxing.. Research on path tracking control of rice transplanter based on MPC algorithm [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 173-178. |
[11] | Yu Xueying, Gao Jiyong, Wang Shoucheng, Li Qingsheng, Wang Zhiqiang.. Apple disease recognition based on Wasserstein generative adversarial networks and hybrid attention mechanism residual network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 166-174. |
[12] | Li Zhibo, Li Yaqin, Zhao Huanmin, Wang Junfa, Ge Yiyuan, Qiu Xinwei.. Study on the decisionmaking scheme of soilrice canopy variable nitrogen application based on GNDVI index [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 160-165. |
[13] | Huang Longjunjiang, Ning Ling. . Study on relations between agricultural mechanization, urban and rural economic development and rice sowing area based on co⁃integration analysis: Empirical data from Jiangxi Province [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(3): 227-236. |
[14] | Liu Zhichao, Wang Xiaomin, Wu Huarui, Wang Haoriqin, Xu Tongyu. Research on rice questionandsentence similarity matching method based on BiLSTM-CNN [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 125-132. |
[15] | Yao Ling, Liu Xiaoli. Mechanism test of rural labor transfer on environmental efficiency of japonica rice production: Based on the perspective of gray water footprint [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 240-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296