English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (7): 281-287.DOI: 10.13733/j.jcam.issn.2095-5553.2025.07.040

• 农业生物质系统与能源工程 • 上一篇    下一篇

可见—近红外光谱法异位发酵床垫料水分快速检测

何金成1, 2,郑积祥1,洪思思1   

  1. (1. 福建农林大学机电工程学院,福州市,350002; 2. 现代农业装备福建省高校工程研究中心,福州市,350002)
  • 出版日期:2025-07-15 发布日期:2025-07-02
  • 基金资助:
    福建省星火项目(2018S0011);福建农林大学科技创新专项(KMY23416XA)

Rapid detection of moisture content in ectopic fermented bedding materials using visible near infrared spectroscopy

He Jincheng1, 2, Zheng Jixiang1, Hong Sisi1   

  1. (1. College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; 
    2. Engineering Research Center of Modern Agricultural Equipment, Fujian University, Fuzhou, 350002, China)
  • Online:2025-07-15 Published:2025-07-02

摘要: 为满足异位发酵床垫料水分快速检测的需求,探讨基于可见—近红外光谱技术建立异位发酵床垫料水分预测模型的可行性。采集4~5个月的垫料样品,通过光谱仪获取400~990nm光谱数据,并用CARS算法筛选关键特征波段。随后构建BP神经网络模型,并对比灰狼算法(GWO)、哈里斯鹰算法(HHO)、冠豪猪算法(CPO)三种优化算法,发现CPO算法优化效果最佳。通过Chebyshev混沌映射改进粒子群算法,形成CARS—ICPO模型。该模型在验证集和预测集上的决定系数R2分别为0.993 5、0.995 6,均方根识差RMSE分别为0.011、0.009,显示出高预测精度和泛化能力。研究结果证实该技术在异位发酵床垫料水分预测的可行性,为其水分的快速检测和异位发酵床的智能化管理提供新方法以及技术支持。

关键词: 异位发酵床, 垫料, 可见—近红外光谱, 水分检测, 神经网络, 算法优化

Abstract: To address the need for rapid moisture detection in ectopic fermentation bedding materials, this study explored the feasibility of developing a moisture prediction model using visible-near infrared spectroscopy (Vis-NIR) technology. Over a period of 4-5 months, samples of bedding materials were collected, and spectral data ranging from 400 nm to 990 nm were obtained using a spectrometer. Key characteristic wavelengths were selected using the Competitive Adaptive Reweighted Sampling (CARS) algorithm. Subsequently, a Backpropagation (BP) neural network model was then constructed and optimized using three optimization algorithms: Grey Wolf Algorithm (GWO), Harris Hawk Algorithm (HHO), and the Guanhao Pig Algorithm (CPO). Among these, the CPO algorithm demonstrated the best optimization performance. To further enhance model accuracy, the Particle Swarm Optimization (PSO) algorithm was improved by integrating Chebyshev chaotic mapping, resulting in the CARS—ICPO model. The final model achieved R2 values of 0.993 5 and 0.995 6 on the validation and prediction sets,respectively, with corresponding RMSE values of 0.011 and 0.009, indicating excellent predictive accuracy and generalization capability. These findings confirmed the feasibility of Vis-NIR spectroscopy combined with advanced machine learning techniques for moisture control prediction in ectopic fermentation bedding materials, offering a novel approach and technical support for rapid detection and intelligent management of fermentation systems.

Key words: ectopic fermentation bed, padding material, visible near infrared spectroscopy, moisture content detection, neural network, algorithm optimization

中图分类号: