[ 1 ] 何东健, 刘冬, 赵凯旋. 精准畜牧业中动物信息智能感知与行为检测研究进展[J]. 农业机械学报, 2016, 47(5): 231-244.
He Dongjian, Liu Dong, Zhao Kaixuan. Review of perceiving animal lnformation and behavior in precision livestock farming [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 231-244.
[ 2 ] Mao A, Huang E, Wang X, et al. Deep learning‑based animal activity recognition with wearable sensors: Overview, challenges, and future directions [J]. Computers and Electronics in Agriculture, 2023, 211: 108043.
[ 3 ] 汪开英, 赵晓洋, 何勇. 畜禽行为及生理信息的无损监测技术研究进展[J]. 农业工程学报, 2017, 33(20): 197-209.
Wang Kaiying, Zhao Xiaoyang, He Yong. Review on noninvasive monitoring technology of poultry behavior andphysiological information [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 197-209.
[ 4 ] 肖德琴, 冯爱晶, 杨秋妹, 等. 基于视频追踪的猪只运动快速检测方法[J]. 农业机械学报, 2016, 47(10): 351-357.
Xiao Deqin, Feng Aijing, Yang Qiumei, et al. Fast motion detection for pigs based on video trackin [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 351-357.
[ 5 ] 李颀, 王丹聪. 基于多传感器的猪只行为辨识[J]. 黑龙江畜牧兽医, 2018(9): 95-99.
[ 6 ] 闫丽, 沈明霞, 姚文, 等. 基于MPU6050传感器的哺乳期母猪姿态识别方法[J]. 农业机械学报, 2015, 46(5): 279-285.
Yan Li, Shen Mingxia, Yao Wen, et al. Recognition method of lactating sows' posture based on sensor MPU6050 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 279-285.
[ 7 ] 王凯, 刘春红, 段青玲. 基于MFO—LSTM的母猪发情行为识别[J]. 农业工程学报, 2020, 36(14): 211-219.
Wang Kai, Liu Chunhong, Duan Qingling. Identification of sow oestrus behavior based on MFO—LSTM [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 211-219.
[ 8 ] 曹丽桃, 程曼, 袁洪波, 等. 可穿戴设备部署位置对羊只行为识别的影响与分析[J]. 中国农机化学报, 2022, 43(12): 133-141.
Cao Litao, Cheng Man, Yuan Hongbo, et al. Influence and analysis of deployment location of wearable devices on sheep behavior recognition [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 133-141.
[ 9 ] 王俊, 张海洋, 赵凯旋, 等. 基于最优二叉决策树分类模型的奶牛运动行为识别[J]. 农业工程学报, 2018, 34(18): 202-210.
Wang Jun, Zhang Haiyang, Zhao Kaixuan, et al. Cow movement behavior classification based on optimal binary decision‑tree classification model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 202-210.
[10] 潘芷欣, 陈荟慧, 钟委钊. 基于可穿戴设备的母猪产后行为识别[J]. 农业工程学报, 2022, 38(S1): 209-217.
Pan Zhixin, Chen Huihui, Zhong Weizhao. Recognition of the behaviour of lactating sows using wearable devices [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(S1): 209-217.
[11] Tran D, Nguyen T N, Khanh P C P, et al. An iot‑based design using accelerometers in animal behavior recognition systems [J]. IEEE Sensors Journal, 2021, 22(18): 17515-17528.
[12] Sun G, Shi C, Liu J, et al. Behavior recognition and maternal ability evaluation for sows based on triaxial acceleration and video sensors [J]. IEEE Access, 2021, 9: 65346-65360.
[13] Nasirahmadi A, Sturm B, Olsson A, et al. Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and support vector machine [J]. Computers and Electronics in Agriculture, 2019, 156: 475-481.
[14] 陈晓曦, 王延杰, 刘恋. 小波阈值去噪法的深入研究[J]. 激光与红外, 2012, 42(1): 105-110.
[15] Banos O, Galvez J, Damas M, et al. Window size impact in human activity recognition [J]. Sensors, 2014, 14(4): 6474-6499.
[16] 姜万录, 王友荣, 王振威, 等. 基于Relief F算法和相关度计算结合的故障特征降维方法及其应用[J]. 液压与气动, 2015(12): 18-24.
[17] Hecht‑Nielsen R. Theory of the backpropagation neural network [J]. Neural Networks, 1988: 593-605.
[18] Breiman L. Random forests [J]. Machine Learning, 2001, 45: 5-32.
[19] Basha S S, Dubey S R, Pulabaigari V, et al. Impact of fully connected layers on performance of convolutional neural networks for image classification [J]. Neurocomputing, 2020, 378: 112-119.
[20] Huang G, Zhu Q, Siew C. Extreme learning machine: theory and applications [J]. Neurocomputing, 2006, 70(1-3): 489-501.
|