[1] Li Y, Li L, Liu X, et al. Treatment of piggery waste in an ectopic microbial fermentation system and safety evaluation of generated organic fertilizer [J]. Journal of Chemical Technology & Biotechnology, 2022, 97(5): 1336-1344.
[2] 朱洪, 常志州, 叶小梅, 等. 基于畜禽废弃物管理的发酵床技术研究: Ⅲ高湿热季节养殖效果评价[J]. 农业环境科学报, 2008(1): 354-358.
Zhu Hong, Chang Zhizhou, Ye Xiaomei, et al. Study on deep litter system for management of livestock manure: Evaluation on effects of deep litter system on pig growth in high temperature and RH season [J]. Journal of Agro-Environment Science, 2008(1): 354-358.
[3] 张林, 何金成. 畜禽粪污发酵翻抛机的研究现状与发展趋势[J]. 湖北农业科学, 2018, 57(S2): 191-195.
Zhang Lin, He Jincheng. Research status and development trends of fermentation and flipping machines for livestock and poultry manure [J]. Hubei Agricultural Sciences, 2018, 57(S2): 191-195.
[4] 董立婷, 朱昌雄, 张丽, 等. 微生物异位发酵床技术在生猪养殖废弃物处理中的应用研究[J]. 农业资源与环境学报, 2016, 33(6): 540-546.
Dong Liting, Zhu Changxiong, Zhang Li, et al. Research and application of ectopic microbial fermentation system in processing piggery waste [J]. Journal of Agricultural Resources and Environment, 2016, 33(6): 540-546.
[5] 李路瑶, 王汉清, 李艳苓, 等. 原位和异位发酵床控制生猪养殖废弃物污染对比[J]. 农业环境科学学报, 2021, 40(10): 2208-2216.
Li Luyao, Wang Hanqing, Li Yanling, et al. Comparative study of in situ and ectopic fermentation systems in piggery waste control [J]. Journal of Agro-Environment Science, 2021, 40(10): 2208-2216.
[6] 孙宏, 吴逸飞, 沈琦,等. 异位发酵床技术在养殖粪污处理中的应用及其影响机制的研究进展[J]. 中国畜牧杂志, 2023, 59(1): 70-76.
Sun Hong, Wu Yifei, Shen Qi, et al.Advances in the performance and regulation mechanism of ectopic fermentation system in the treatment of livestock and poultry wastes [J]. Chinese Journal of Animal Science, 2023, 59(1): 70-76.
[7] Mohammad N, Alam M Z, Kabbashi N A, et al. Effective composting of oil palm industrial waste by filamentous fungi: A review [J]. Resources, Conservation and Recycling, 2012,58: 69-78.
[8] Kim E, Lee D, Won S, et al. Evaluation of optimum moisture content for composting of beef manure and bedding material mixtures using oxygen uptake measurement [J]. Asian-Australasian Journal of Animal Sciences, 2015, 29(5): 753.
[9] 韩志恒, 陶志影, 曾育宁, 等. 基于介电特性的异位发酵床稻谷壳含水率的检测[J]. 河南农业科学, 2021, 50(5): 173-180.
Han Zhiheng, Tao Zhiying, Zeng Yuning, et al. Moisture content prediction of rice husk in ectopic fermentation bed based on dielectric property [J]. Journal of Henan Agricultural Sciences, 2021, 50(5): 173-180.
[10] 周宏, 方蕙, 潘健, 等. 浸入式可见/近红外光谱的雨生红球藻叶绿素含量研究[J].光谱学与光谱分析, 2017, 37(11):3375-3378.
Zhou Hong, Fang Hui, Pan Jian, et al.Chlorophyll content research of haematococcus pluvial is based on immersed visible/near-infrared spectroscopy [J]. Spectroscopy and Spectral Analysis, 2017, 37(11): 3375-3378.
[11] 蒋璐璐, 魏萱, 谢传奇, 等. 可见—近红外光谱的螺旋藻生长品质指标快速无损检测[J]. 光谱学与光谱分析, 2018, 38(8):2493-2497.
Jiang Lulu, Wei Xuan, Xie Chuanqi,et al.Non-destructive determination of growth quality indicators of Spirulina sp.using Vis/NIR spectroscopy [J]. Spectroscopy and Spectral Analysis, 2018, 38(8):2493-2497.
[12] 唐永生, 陈争光. 基于卷积神经网络与可见近红外光谱的土壤含氮量检测[J]. 黑龙江八一农垦大学学报, 2021, 33(3): 93-99.
Tang Yongsheng, Chen Zhengguang. Detection of soil nitrogen content based on convolution neural network and visible-near infrared spectroscopy [J]. Journal of Heilongjiang Bayi Agricultural University, 2021, 33(3): 93-99.
[13] Kim G, Hong S, Lee A, et al. Moisture content measurement of broad leaf litters using near-infrared spectroscopy technique [J]. Remote Sensing, 2017, 9(12):1212.
[14] Chen Z, Ren S, Qin R, et al. Rapid detection of different types of soil nitrogen using near-infrared hyper spectral imaging [J]. Molecules, 2022, 27(6): 2017.
[15] Tan B, You W, Tian S, et al. Soil nitrogen content detection based on near-infrared spectroscopy [J]. Sensors, 2022, 22(20):8013.
[16] He Y, Xiao S, Nie P, et al. Research on the optimum water content of detecting soil nitrogen using near infrared sensor [J]. Sensors,2017,17(9):2045.
[17] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer [J]. Advances in Engineering Software, 2014, 69: 46-61.
[18] Heidari A A, Mirjalili S, Faris H, et al. Harris hawks optimization: Algorithm and applications [J]. Future Generations Computer Systems(FGCS), 2019, 97:849-872.
[19] Mohamed A, Reda M, Mohamed A. Crested porcupine optimizer: A new nature-inspired meta heuristic [J]. Knowledge-Based Systems, 2024, 284:111257.
[20] 沈孟龙.一种基于Chebyshev映射的改进型混沌序列生成算法[D].昆明:云南大学,2015.
Shen Menglong. An improved chaotic sequence generation algorithm based on Chebyshev mapping [D]. Kunming: Yunnan University, 2015.
[21] 金慧凝, 张新乐, 刘焕军, 等. 基于光谱吸收特征的土壤含水量预测模型研究[J]. 土壤学报, 2016, 53(3):627-635.
Jin Huining, Zhang Xinle, Liu Huanjun, et al. Soil moisture predicting model based on spectral absorption characteristics of the soil [J]. Acta Pedologica Sinica, 2016, 53(3): 627-635.
|