[1] 谢从华. 马铃薯产业的现状与发展[J]. 华中农业大学学报(社会科学版), 2012(1): 1-4.
Xie Conghua. Potato industry: Status and development [J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2012(1): 1-4.
[2] 高华援, 梁桓赫, 王凤, 等. 中国马铃薯栽培技术研究进展[J]. 吉林农业科学, 2007(5): 17-19, 27.
[3] 贾萍. 马铃薯早疫病和晚疫病的特征及防治方法[J]. 新农业, 2023(3): 6-8.
[4] Xia X, Wu Y, Lu Q, et al. Experimental study on crop disease detection based on deep learning [C]. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019, 569(5): 052034.
[5] Wang L, Sun J, Wu X, et al. Identification of crop diseases using improved convolutional neural networks [J]. IET Computer Vision, 2020, 14(7): 538-545.
[6] 李淼, 王敬贤, 李华龙, 等. 基于CNN和迁移学习的农作物病害识别方法研究[J]. 智慧农业, 2019, 1(3): 46-55.
Li Miao, Wang Jingxian, Li Hualong, et al. Method for identifying crop disease based on CNN and transfer learning [J]. Smart Agriculture, 2019, 1(3): 46-55.
[7] 李好, 邱卫根, 张立臣. 改进ShuffleNetV2的轻量级农作物病害识别方法[J]. 计算机工程与应用, 2022, 58(12): 260-268.
Li Hao, Qiu Weigen, Zhang Lichen. Improved ShuffleNetV2 for lightweight crop disease identification [J]. Computer Engineering and Applications, 2022, 58(12): 260-268.
[8] 杜甜甜, 南新元, 黄家興, 等. 改进RegNet识别多种农作物病害受害程度[J]. 农业工程学报, 2022, 38(15):150-158.
Du Tiantian, Nan Xinyuan, Huang Jiaxing, et al. Identifying the damage degree of various crop diseases using an improved RegNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 150-158.
[9] 李明, 丁智欢, 赵靖暄, 等. 基于改进YOLOv5s的日光温室黄瓜霜霉病孢子囊检测计数方法[J]. 中国农机化学报, 2023, 44(5): 63-70.
Li Ming, Ding Zhihuan, Zhao Jingxuan, et al. Detection method for cumcumber downy mildew sporangia in a solar greenhouse based on improved YOLOv5s [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 63-70.
[10] Buzzy M, Thesma V, Davoodi M, et al. Real-time plant leaf counting using deep object detection networks [J]. Sensors, 2020, 20(23): 6896.
[11] Khaki S, Safaei N, Pham H, et al. WheatNet: A lightweight convolutional neural network for high-throughput image-based wheat head detection and counting [J]. Neurocomputing, 2022, 489: 78-89.
[12] 高伟锋. 基于YOLOv8的柑橘病虫害识别系统研究与设计[J]. 智慧农业导刊, 2023, 3(15): 27-30.
Gao Weifeng. Research on the design of citrus disease and pest identification system based on YOLOv8 [J]. Journal of Smart Agriculture, 2023, 3(15): 27-30.
[13] Mohameth F, Bingcai C, Sada K A. Plant disease detection with deep learning and feature extraction using plant village [J]. Journal of Computer and Communications, 2020, 8(6): 10-22.
[14] Ma N, Zhang X, Zheng H T, et al. ShuffleNetV2: Practical guidelines for efficient CNN architecture design [C]. Proceedings of the European Conference on Computer Vision, 2018: 116-131.
[15] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[16] Yang L, Zhang R Y, Li L, et al. SimAM: A simple, parameter-free attention module for convolutional neural networks [C]. International Conference on Machine Learning, PMLR, 2021: 11863-11874.
[17] Gevorgyan Z. SIoU loss: More powerful learning for bounding box regression [J]. arXiv preprint arXiv: 2205.12740, 2022.
|