[1] 许威, 尹逊春. 振动式核桃采摘机的设计与优化[J]. 林业机械与木工设备, 2023, 51(5): 66-73.
Xu Wei, Yin Xunchun. Design and optimization of vibrating walnut picker [J]. Forestry Machinery & Woodworking Equipment, 2023, 51(5): 66-73.
[2] Sarig Y. Mechanized fruit harvesting: Site specific solutions [J]. Information and Technology for Sustainable Fruit and Vegetable Production, 2005, 5: 237-247.
[3] 刘梦飞. 核桃采摘机的设计与试验[D]. 西安: 陕西科技大学, 2015.
[4] 林欢, 孙磊厚, 王二化. 我国林果振动采收机发展应用现状与展望[J]. 江苏农业科学, 2021, 49(1): 36-42.
[5] 陈泽斌. 振动式林果采收技术的研究现状[J]. 机械工程师, 2021(1): 21-24.
[6] 刘晓晨. 小型林果自适应振动采收方法研究[D]. 杭州: 浙江理工大学, 2019.
[7] 王长勤, 许林云, 周宏平, 等. 偏心式林果振动采收机的研制与试验[J]. 农业工程学报, 2012, 28(16): 10-16.
Wang Changqin, Xu Linyun, Zhou Hongping, et al. Development and experiment of eccentric-type vibratory harvester for forest-fruits [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(16): 10-16.
[8] Júnior L G F, da Silva F M, Ferreira D D, et al. Dynamic behavior of coffee tree branches during mechanical harvest [J]. Computers and Electronics in Agriculture, 2020, 173: 105415.
[9] 郑甲红, 毛俊超, 韩冰冰. 振动式采摘机振动夹持位置的仿真研究[J]. 陕西科技大学学报(自然科学版), 2014, 32(1): 142-147.Zheng Jiahong, Mao Junchao, Han Bingbing. The vibrating picking machine vibration clamping position simulation research [J]. Journal of Shaanxi University of Science & Technology, 2014, 32(1): 142-147.
[10] 许林云, 刘冠华, 周杰, 等. 用于振动采收的有果有叶果树振动模型构建 [J]. 农业工程学报, 2020, 36(11): 1-12.
Xu Linyun, Liu Guanhua, Zhou Jie, et al. Construction of the vibration model of the fruit trees with fruits and leaves for vibration harvesting [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 1-12.
[11] 李萍. 基于振动式采收的枸杞跌落损伤机理及枝条振动特性研究 [D]. 银川: 宁夏大学, 2021.
[12] Wang Y, Wang W, Fu H, et al. Detachment patterns and impact characteristics of litchi fruit during vibrational harvesting [J]. Scientia Horticulturae, 2022, 295: 110836.
[13] 瞿维, 王春耀, 王学农, 等. 受迫振动下杏果实树枝能量传递初探[J]. 西北农林科技大学学报(自然科学版), 2014, 42(7): 223-227.
Qu Wei, Wang Chunyao, Wang Xuenong, et al. Energy transfer of apricot fruit branch under forced vibration [J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(7): 223-227.
[14] Wang Z, Jin L, Wang S, et al. Apple stem/calyx real-time recognition using YOLOv5 algorithm for fruit automatic loading system [J]. Postharvest Biology and Technology, 2022, 185: 111808.
[15] 段洁利, 王昭锐, 邹湘军, 等. 采用改进YOLOv5的蕉穗识别及其底部果轴定位[J]. 农业工程学报, 2022, 38(19): 122-130.
Duan Jieli, Wang Zhaorui, Zou Xiangjun, et al. Recognition of bananas to locate bottom fruit axis using improved YOLOv5 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(19): 122-130.
[16] Redmon J. YOLOv3: An incremental improvement [J].arXiv preprint arXiv: 1804.02767, 2018.
[17] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv: 2004.10934, 2020.
[18] Yin X, Li W, Li Z, et al. Recognition of grape leaf diseases using MobileNetV3 and deep transfer learning [J]. International Journal of Agricultural and Biological Engineering, 2022, 15(3): 184-194.
[19] Hu J, Shen L, Sun G. Squeeze-and-excitation networks [C].
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[20] Liu X, Hu J, Wang H, et al. Gaussian-IoU loss: Better learning for bounding box regression on PCB component detection [J]. Expert Systems with Applications, 2022, 190: 116178.
[21] 吕石磊, 卢思华, 李震, 等. 基于改进YOLOv3—LITE轻量级神经网络的柑橘识别方法 [J]. 农业工程学报, 2019, 35(17): 205-214.
Lü Shilei, Lu Sihua, Li Zhen, et al. Orange recognition method using improved YOLOv3—LITE lightweight neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 205-214.
[22] 许燕, 段春旭, 王世江, 等. 一种软轴传动偏心激振式核桃采收装置[P]. 中国专利: CN217564179U, 2022-10-14.
|