[1] 李翠明, 杨柯, 申涛, 等. 基于改进Faster R—CNN的苹果采摘视觉定位与检测方法[J]. 农业机械学报, 2024, 55(1): 47-54.
Li Cuiming, Yang Ke, Shen Tao, et al. Vision detection method for picking robots based on improved Faster R—CNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(1): 47-54.
[2] 宋中山, 刘越, 郑禄, 等. 基于改进YOLOv3的自然环境下绿色柑橘的识别算法[J]. 中国农机化学报, 2021, 42(11): 159-165.
Song Zhongshan, Liu Yue, Zheng Lu, et al. Identification of green citrus based on improved YOLOv3 in natural environment [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 159-165.
[3] 傅隆生, 冯亚利, Elkamil Tola, 等. 基于卷积神经网络的田间多簇猕猴桃图像识别方法[J]. 农业工程学报, 2018, 34(2): 205-211.
Fu Longsheng, Feng Yali, Elkamil Tola, et al. Image recognition method of multi-cluster kiwifruit in field based on convolutional neural networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 205-211.
[4] Sun H, Wang B, Xue J. YOLO—P: An efficient method for pear fast detection in complex orchard picking environment [J]. Frontiers in Plant Science, 2023, 13: 1089454.
[5] 黄小玉, 李光林, 马驰, 等. 基于改进判别区域特征融合算法的近色背景绿色桃子识别[J]. 农业工程学报, 2018, 34(23): 142-148.
Huang Xiaoyu, Li Guanglin, Ma Chi, et al. Green peach recognition based on improved discriminative regional feature integration algorithm in similar background [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 142-148.
[6] 刘忠意, 魏登峰, 李萌, 等. 基于改进YOLOv5的橙子果实识别方法[J]. 江苏农业科学, 2023, 51(19): 173-181.Liu Zhongyi, Wei Dengfeng, Li Meng, et al. Orange fruit recognition method based on improved YOLOv5 [J].〖JP〗Jiangsu Agricultural Sciences, 2023, 51(19): 173-181.
[7] 熊俊涛, 郑镇辉, 梁嘉恩, 等. 基于改进YOLOv3网络的夜间环境柑橘识别方法[J]. 农业机械学报, 2020, 51(4): 199-206.
Xiong Juntao, Zheng Zhenhui, Liang Jiaen, et al. Citrus detection method in night environment based on improved YOLOv3 network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 199-206.
[8] 唐熔钗, 伍锡如. 基于改进YOLO—V3网络的百香果实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 32-39.
Tang Rongchai, Wu Xiru. Real-time detection of passion fruit based on improved YOLO—V3 network [J]. Journal of Guangxi Normal University, 2020, 38(6): 32-39.
[9] 张俊宁, 毕泽洋, 闫英, 等. 基于注意力机制与改进YOLO的温室番茄快速识别[J]. 农业机械学报, 2023, 54(5): 236-243.
Zhang Junning, Bi Zeyang, Yan Ying, et al. Fast recognition of greenhouse tomato targets based on attention mechanism and improved YOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(5): 236-243.
[10] Li P, Zheng J, Li P, et al. Tomato maturity detection and counting model based on MHSA—YOLOv8 [J]. Sensors, 2023, 23(15): 6701.
[11] Liu G, Nouaze J C, Touko Mbouembe P L, et al. YOLO-tomato: A robust algorithm for tomato detection based on YOLOv3 [J]. Sensors, 2020, 20(7): 2145.
[12] 周宏平, 金寿祥, 周磊, 等. 基于迁移学习与YOLOv8n的田间油茶果分类识别[J]. 农业工程学报, 2023, 39(20): 159-166.
Zhou Hongping, Jin Shouxiang, Zhou Lei, et al. Classification and recognition of camellia oleifera fruit in the field based on transfer learning and YOLOv8n [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(20): 159-166.
[13] 张秀再, 沈涛, 许岱. 基于改进YOLOv8算法的遥感图像目标检测[J]. 激光与光电子学进展, 2024(10): 290-300.
Zhang Xiuzai, Shen Tao, Xu Dai. Remote-sensing image object detection based on improved YOLOv8 algorithm [J]. Laser & Optoelectronics Progress, 2024(10): 290-300.
[14] 张姝瑾, 许兴时, 邓洪兴, 等. 基于YOLOv8n—seg—FCA—BiFPN的奶牛身体分割方法研究[J]. 农业机械学报, 2024, 55(3): 282-289, 391.
Zhang Shujin, Xu Xingshi, Deng Hongxing, et al. Segmentation model of cow body parts based on YOLOv8n—seg—FCA—BiFPN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(3): 282-289, 391.
[15] 袁红春, 陶磊. 基于改进的YOLOv8商业渔船电子监控数据中鱼类的检测与识别[J]. 大连海洋大学学报, 2023, 38(3): 533-542.
Yuan Hongchun, Tao Lei. Detection and identification of fish in electronic monitoring data of commercial fishing vessels based on improved YOLOv8 [J]. Journal of Dalian Ocean University, 2023, 38(3): 533-542.
[16] Wei Z, Li Z, Han S. YFDM: YOLO for detecting morse code [J]. Scientific Reports, 2023, 13(1): 20614.
[17] Du Y, Liu X, Yi Y, et al. Optimizing road safety: Advancements in lightweight YOLOv8 models and GhostC2f design for real-time distracted driving detection [J]. Sensors, 2023, 23(21): 8844.
[18] Pan P, Guo W, Zheng X, et al. Xoo-YOLO: A detection method for wild rice bacterial blight in the field from the perspective of unmanned aerial vehicles [J]. Frontiers in Plant Science, 2023, 14: 1256545.
[19] 胡奕帆, 赵贤林, 李佩娟, 等. 基于改进YOLOv5的自然环境下番茄果实检测[J]. 中国农机化学报, 2023, 44(10): 231-237.
Hu Yifan, Zhao Xianlin, Li Peijuan, et al. Tomato fruit detection in natural environment based on improved YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(10): 231-237.
[20] 胡兰兰, 邓超. 基于SimAM—YOLOv5s的PCB缺陷检测算法[J]. 无线电工程, 2024(5): 1136-1145.
Hu Lanlan, Deng Chao. PCB defect detection algorithm based on SimAM—YOLOv5s [J]. Radio Engineering, 2024(5): 1136-1145.
[21] 谢康康, 朱文忠, 谢林森, 等. 基于改进YOLOv7的火焰烟雾检测算法[J]. 国外电子测量技术, 2023, 42(7): 41-49.
[22] 李子茂, 李嘉晖, 尹帆, 等. 基于可形变卷积与SimAM注意力的密集柑橘检测算法[J]. 中国农机化学报, 2023, 44(2): 156-162.
Li Zimao, Li Jiahui, Yin Fan, et al. Dense citrus detection algorithm based on deformable convolution and SimAM attention [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 156-162.
[23] Webb B S, Dhruv N T, Solomon S G, et al. Early and late mechanisms of surround suppression in striate cortex of macaque [J]. Journal of Neuroscience, 2005, 25(50): 11666-11675.
|