[1] 张更, 颜志明, 王全智, 等. 我国设施草莓无土栽培技术的研究进展与发展建议[J]. 江苏农业科学, 2019, 47(18): 58-61.
[2] 翟长远, 付豪, 郑康, 等. 基于深度学习的大田甘蓝在线识别模型建立与试验[J]. 农业机械学报, 2022, 53(4): 293-303.
Zhai Changyuan, Fu Hao, Zheng Kang, et al. Establishment and experimental verification of deep learning model for online recognition of field cabbage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(4): 293-303.
[3] 苗中华, 沈一筹, 王小华, 等. 自然环境下重叠果实图像识别算法与试验[J]. 农业机械学报, 2016, 47(6): 21-26.
Miao Zhonghua, Shen Yichou, Wang Xiaohua, et al. Image recognition algorithm and experiment of overlapped fruits in natural environment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 21-26.
[4] 王粮局, 张立博, 段运红, 等. 基于视觉伺服的草莓采摘机器人果实定位方法[J]. 农业工程学报, 2015, 31(22): 25-31.
Wang Liangju, Zhang Libo, Duan Yunhong,et al. Fruit localization for strawberry harvesting robot based on visual servoing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22): 25-31.
[5] 张凯良, 杨丽, 张铁中. 草莓采摘位置机器视觉与激光辅助定位方法[J]. 农业机械学报, 2010, 41(4): 151-156.
Zhang Kailiang, Yang Li, Zhang Tiezhong. Object locating method of laserassisted machine vision for strawberryharvesting [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(4): 151-156.
[6] 李震, 洪添胜, 倪慧娜, 等. 用高光谱成像技术检测柑橘红蜘蛛为害叶片的色素含量[J]. 农业工程学报, 2014, 30(6): 124-130.
Li Zhen, Hong Tiansheng, Ni Huina, et al. Pigment content measurement for citrus red mite infected leaf using hyperspectral imaging technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(6): 124-130.
[7] Schmidhuber J. Deep learning in neural networks: An overview [J]. Neural Networks, 2015, 61: 85-117.
[8] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28.
[9] He K, Gkioxari G, Dollár P, et al. Mask R-CNN [C].Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[10] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector [C]. European Conference on Computer Vision, Springer, Cham, 2016: 21-37.
[11] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[12] Redmon J, Farhadi A. YOLO9000: better, faster, stronger [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[13] 闫建伟, 赵源, 张乐伟, 等. 改进Faster-RCNN自然环境下识别刺梨果实[J]. 农业工程学报, 2019, 35(18): 143-150.
Yan Jianwei, Zhao Yuan, Zhang Lewei,et al. Recognition of Rosa roxbunghii in natural environment based on improved Faster-RCNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18): 143-150.
[14] Chu P, Li Z, Lammers K, et al. Deep learningbased apple detection using a suppression Mask R-CNN [J]. Pattern Recognition Letters, 2021, 147: 206-211.
[15] 赵德安, 吴任迪, 刘晓洋, 等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3): 164-173.
Zhao Dean, Wu Rendi, Liu Xiaoyang,et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 164-173.
[16] Yu Y, Zhang K, Yang L, et al. Fruit detection for strawberry harvesting robot in nonstructural environment based on Mask R-CNN [J]. Computers and Electronics in Agriculture, 2019, 163: 104846.
[17] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv, 2004.10934, 2020.
[18] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[19] Gevorgyan Z. SIoU Loss: More powerful learning for bounding box regression [J]. arXiv preprint arXiv, 2205.12740, 2022.
[20] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[21] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
|