English

中国农机化学报

中国农机化学报 ›› 2023, Vol. 44 ›› Issue (9): 205-213.DOI: 10.13733/j.jcam.issn.2095-5553.2023.09.029

• 农业智能化研究 • 上一篇    下一篇

基于改进YOLOv4的草莓果柄叶识别与定位

黄家才,汪涛,张铎,唐安,高芳征   

  1. 南京工程学院工业中心,南京市,211167
  • 出版日期:2023-09-15 发布日期:2023-10-07
  • 基金资助:
    江苏省高等学校自然科学研究重大项目(20KJA510007);国家自然科学基金面上项目(61873120);江苏省重点研发计划课题(BE2021016-5);江苏省自然科学基金面上项目(BK20201469)

Recognition and localization of strawberry stalk leaf based on improved YOLOv4

Huang Jiacai, Wang Tao, Zhang Duo, Tang An, Gao Fangzheng   

  • Online:2023-09-15 Published:2023-10-07

摘要: 为降低采摘过程中对草莓果肉造成的损伤,并实现在复杂的实际采摘场景下对草莓果柄的识别和定位,提出一种结合改进YOLOv4和传统图像处理技术的方案。与传统思维方式不同,该方案将采摘点放在草莓果柄叶上,以确保在采摘过程中草莓的完整性。首先,通过改进YOLOv4算法,准确定位草莓的位置,然后,利用图像处理技术对果肉、果柄叶和背景进行分割,从而确定采摘点的图像坐标,最后,结合双目定位算法和测距传感器数据,测量采摘点的空间坐标。试验结果表明:改进后的YOLOv4算法测试精度达到90%,并且结合传统图像处理算法后,能够有效消除复杂背景的干扰,从而增强算法的鲁棒性。测距结果显示果柄叶深度距离误差在5mm以内,能够准确地定位采摘点坐标,因此在实际采摘场景中表现出更好的适用性。

关键词: 草莓采摘, 图像处理, 神经网络, 果柄叶识别

Abstract: In order to reduce the damage to strawberry fruit during the picking process and achieve the recognition and localization of strawberry stems in complex practical picking scenarios, this paper proposes a hybrid approach combining improved YOLOv4 and traditional image processing techniques. Unlike conventional methods, this approach places the picking point on the strawberry stem to ensure the integrity of the fruit during picking. Firstly, the improved YOLOv4 algorithm is employed to accurately locate the strawberries. Then, image processing techniques are utilized to segment the fruit, strawberry stems, and background, thereby determining the image coordinates of the picking point. Finally, the spatial coordinates of the picking point are measured by integrating binocular positioning algorithms and distance sensor data. Experimental results demonstrate that the improved YOLOv4 algorithm achieves a testing accuracy of 90% and, in conjunction with traditional image processing techniques, effectively eliminates interference from complex backgrounds, thereby enhancing the robustness of the algorithm. The depth distance error of strawberry stems measured by the distance sensor is within 5mm, enabling precise localization of the picking point, thus exhibiting superior applicability in practical picking scenarios.

Key words: strawberry picking, image processing, neural networks, stem leaf identification

中图分类号: