[1] 于红梅, 袁华招, 关玲, 等. 江苏省草莓种苗繁育发展现状及对策建议[J]. 江苏农业科学, 2021, 49(16): 139-143.
Yu Hongmei, Yuan Huazhao, Guan Ling, et al. Development status and countermeasures of strawberry seeding breeding in Jiangsu Province [J]. Jiangsu Agricultural Sciences, 2021, 49(16): 139-143.
[2] 李健, 戴楚彦, 王扬威, 等. 面向草莓抓取的气动四叶片软体抓手研制[J]. 哈尔滨工业大学学报, 2022, 54(1): 105-113.
Li Jian, Dai Chuyan, Wang Yaowei, et al. Development of pneumatic four blade soft grasp for grabbing strawberry [J]. Journal of Harbin Institute of Technology, 2022, 54(1): 105-113.
[3] 张凯良, 杨丽, 张铁中. 草莓采摘位置机器视觉与激光辅助定位方法[J]. 农业机械学报, 2010, 41(4): 151-156.
Zhang Kailiang, Yang Li, Zhang Tiezhong. Object locating method of laserassisted machine vision for strawberryharvesting [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(4): 151-156.
[4] Hayashi S, Shigematsu K, Yamamoto S, et al. Evaluation of a strawberryharvesting robot in a field test [J]. Biosystems Engineering, 2010, 105(2): 160-171.
[5] 谢志勇, 张铁中. 基于RGB彩色模型的草莓图像色调分割算法[J]. 中国农业大学学报, 2006(1): 84-86.
Xie Zhiyong, Zhang Tiezhong. A new method of segmentation of strawberry image [J]. Journal of China Agricultural University, 2006(1): 84-86.
[6] 赵利平, 吴德刚. 融合GA的三点定位夜间苹果目标的识别算法研究[J]. 中国农机化学报, 2020, 41(5): 134-138.
Zhao Liping, Wu Degang. Research on threepoint localization algorithm based on GA for night apple targets [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(5): 134-138.
[7] 张继成, 李德顺. 基于深度残差学习的成熟草莓识别方法[J]. 中国农机化学报, 2022, 43(2): 136-142.
Zhang Jicheng, Li Deshun. Ripe strawberry recognition method based on deep residual learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2): 136-142.
[8] 李辉熠, 乔波. 基于多角度图像特征的果蔬识别方案设计——以西红柿为例[J]. 食品安全质量检测学报, 2021, 12(10): 4129-4135.Li Huiyi, Qiao Bo. Design of fruit and vegetable recognition scheme based on multi angle imagefeaturestaking tomato as an example [J]. Journal of Food Safety and Quality, 2021, 12(10): 4129-4135.
[9] 刘继展, 吴硕. 草莓全程生产机械化技术与装备研究进展[J]. 农业机械学报, 2021, 52(5): 1-16.
Liu Jizhan, Wu Shuo.Research progress and prospect of strawberry wholeprocess farming mechanization technology and equipment [J]. Transactions of the Chinese Society for Agricultural, 2021, 52(5): 1-16.
[10] 刘小刚, 范诚, 李加念, 等. 基于卷积神经网络的草莓识别方法[J]. 农业机械学报, 2020, 51(2): 237-244.
Liu Xiaogang, Fan Cheng, Li Jianian, et al. Identification method of strawberry based on convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 237-244.
[11] 王璐婷. 国外网页资源归档的协同采集模式及其启示[J]. 档案学研究, 2022(2): 69-76.Wang Luting. The collaborative collection mode of foreign webpage resource archiving and its enlightenment [J]. Archives Science Study, 2022(2): 69-76.
[12] 王之伟, 陆晓, 刁瑞盛, 等. 基于深度强化学习的电网自主控制与决策技术[J]. 电力工程技术, 2020, 39(6): 34-43.
Wang Zhiwei, Lu Xiao, Diao Ruisheng, et al. Deepreinforcementlearning based autonomous control and decision making for power systems [J]. Electric Power Engineering Technology, 2020, 39(6): 34-43.
[13] 魏业文, 李梅, 解园琳, 等. 基于改进Faster-RCNN的输电线路巡检图像检测[J]. 电力工程技术, 2022, 41(2): 171-178.
Wei Yewen, Li Mei, Xie Yuanlin, et al. Transmission line inspection image detection based on improved Faster-RCNN [J]. Electric Power Engineering Technology, 2022, 41(2): 171-178.
[14] EgmontPetersen M, Ridder D D, Handels H. Image processing with neural networks—A review [J]. Pattern Recognition, 2002, 35(10): 2279-2301.
[15] 张铁中, 陈利兵, 宋健. 草莓采摘机器人的研究: Ⅱ. 基于图像的草莓重心位置和采摘点的确定[J]. 中国农业大学学报, 2005(1): 48-51.Zhang Tiezhong, Chen Libing, Song Jian.Study on strawberry harvesting robot: Ⅱ. Images based identifications of strawberry barycenter and plucking position [J]. Journal of China Agricultural University, 2005(1): 48-51.
[16] 王琪龙, 李建勇, 沈海阔. 双目视觉—激光测距传感器目标跟踪系统[J]. 光学学报, 2016, 36(9): 186-194.
Wang Qilong, Li Jianyong, Shen Haikuo. Target tracking system of binocular vision and laser range sensor [J]. Acta Optica Sinica, 2016, 36(9): 186-194.
(上接第182页)
[12] 高云. 基于无线传感器网络的猪运动行为监测系统研究[D]. 武汉: 华中农业大学, 2014.Gao Yun. Study of pig behavior monitoring and analysis system based on WSN [D]. Wuhan: Huazhong Agricultural University, 2014.
[13] 李日华, 黄月芹, 韦丽娇, 等. 基于RFID的规模化智能养猪系统设计[J]. 现代农业装备, 2021, 42(4): 60-63.
Li Rihua, Huang Yueqin, Wei Lijiao, et al. Design of largescale intelligent pig raising system based on RFID [J]. Modern Agricultural Equipment, 2021, 42(4): 60-63.
[14] 龙瑞军, 董世魁, 王元素, 等. 反刍动物采食量的概念与研究方法[J]. 草业学报, 2003(5): 8-17.Long Ruijun, Dong Shikui, Wang Yuansu, et al. Concepts and research methods of ruminants [J]. Acta Prataculturae Sinica, 2003(5): 8-17.
[15] 吴世海, 鲍义东, 陈果, 等. 基于机器视觉技术的猪行为活动无接触识别系统[J]. 计算机系统应用, 2020, 29(4): 113-117.
Wu Shihai, Bao Yidong, Chen Guo, et al. Contactless identification system for pig behavior based on machine vision [J]. Computer Systems & Applications, 2020, 29(4): 113-117.
[16] 中国动物疫病预防控制中心. 非洲猪瘟临床表现和剖检病变[J]. 中国畜牧业, 2018(22): 70-71.
China Animal Disease Prevention and Control Center. Clinical manifestations and autopsy lesions of African swine fever [J]. China Animal Industry, 2018(22): 70-71.
[17] 朱云. 猪瘟的流行特点、临床表现与防控措施[J]. 现代畜牧科技, 2019(8): 132-133.
Zhu Yun. Epidemiological characteristics, clinical manifestations and prevention and control measures of swine fever [J]. Modern Animal Husbandry Science & Technology, 2019(8): 132-133.
[18] 殷梦妮. 基于高斯混合模型的运动目标检测[D]. 哈尔滨: 哈尔滨工程大学, 2012.Yin Mengni. Moving object detection based on Gaussian mixture model [D]. Harbin: Harbin Engineering University, 2012.
[19] 罗铁镇. 基于混合高斯模型的运动检测及阴影消除算法研究[D]. 长沙: 湖南大学, 2010.Luo Tiezhen. Theresearch of motion detection based on Gaussian mixture model and shadow elimination algorithm [D]. Changsha: Hunan University, 2010.
[20] 张小艳, 郭海涛. 基于改进混合高斯模型的井下目标检测算法[J]. 工矿自动化, 2021, 47(4): 67-72.
Zhang Xiaoyan, Guo Haitao. Underground target detection algorithm based on improved Gaussian mixture model [J]. Industry and Mine Automation, 2021, 47(4): 67-72.
[21] 李笑, 杨宇, 徐一鸣. 四帧间差分和改进混合高斯模型对运动目标的检测[J]. 科学技术与工程, 2020, 20(15): 6141-6150.
Li Xiao, Yang Yu, Xu Yiming. Detection of moving targets by fourframe difference in modified Gaussian mixture model [J]. Science Technology and Engineering, 2020, 20(15): 6141-6150.
|