[1] Adamchuk V I, Hummel J W, Morgan M T, et al. On-the-go soil sensors for precision agriculture [J]. Computers and electronics in agriculture, 2004, 44(1): 71-91.
[2] Sinfield J V, Fagerman D, Colic O. Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils [J]. Computers and Electronics in Agriculture, 2010, 70(1): 1-18.
[3] 汪洪涛, 李耀翔. 基于NIR-PLS的土壤碳含量预测模型研究[J]. 森林工程, 2014, 30(1): 5-8.
Wang Hongtao, Li Yaoxiang. Predicting soil carbon content based on the near infrared spectroscopy and partial least squares [J]. Forest Engineering, 2014, 30(1): 5-8.
[4] 卢艳丽, 白由路, 王磊, 等. 黑土土壤中全氮含量的高光谱预测分析[J]. 农业工程学报, 2010, 26(1): 256-261.
Lu Yanli, Bai Youlu, Wang Lei, et al. Determination for total nitrogen content in black soil using hyperspectral data [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 256-261.
[5] 张瑶, 李民赞, 郑立华, 等. 基于近红外光谱分析的土壤分层氮素含量预测[J]. 农业工程学报, 2015, 31(9): 121-126.
Zhang Yao, Li Minzan, Zheng Lihua, et al.Prediction of soil total nitrogen content in different layers based on near infrared spectral analysis [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(9): 121-126.
[6] 赵燕东, 刘宇琦, 孙哲, 等. 土壤硝态氮含量原位检测系统设计[J]. 农业工程学报, 2022, 38(15): 115-123.
Zhao Yandong, Liu Yuqi, Sun Zhe, et al. Design of the detection system for the insitu measurement of soil nitrate-nitrogen contents [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 115-123.
[7] Shibusawa S. Online real time soil sensor [C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, 2003.
[8] Christy C D, Drummond P, Laird D A. An onthego spectral reflectance sensor for soil [C]. 2003 ASAE Annual Meeting, 2003.
[9] Linker R, Kenny A, Shaviv A, et al. Fourier transform infraredattenuated total reflection nitrate determination of soil pastes using principal component regression, partial least squares, and crosscorrelation [J]. Applied spectroscopy, 2004, 58(5): 516-520.
[10] Jahn B, Linker R, Upadhyaya S, et al. Midinfrared spectroscopic determination of soil nitrate content [J]. Biosystems Engineering, 2006, 94(4): 505-515.
[11] Adamchuk V I, Dobermann A, Morgan M T, et al. Feasibility of onthego mapping of soil nitrate and potassium using ionselective electrodes [C]. 2002 ASAE Annual Meeting, 2002.
[12] Adamchuk V I, Lund E, Sethuramasamyraja B, et al. Direct measurement of soil chemical properties onthego using ionselective electrodes [J]. Computers and electronics in agriculture, 2005, 48(3): 272-294.
[13] Sethuramasamyraja B, Adamchuk V I, Dobermann A, et al. Agitated soil measurement method for integrated onthego mapping of soil pH, potassium and nitrate contents [J]. Computers and electronics in agriculture, 2008, 60(2): 212-225.
[14] 孔盼, 张淼, 任海燕, 等. 土壤硝态氮电极法测定的快速前处理工艺研究[J]. 农业机械学报, 2015, 46(S1): 102-107.
Kong Pan, Zhang Miao, Ren Haiyan, et al.Rapid pretreament method for soil nitrate nitrogen detection based on ionselective electrode [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(S1): 102-107.
[15] 李雁华, 张淼, 郑杰, 等. 基于ISE的湿土硝态氮检测方法研究[J]. 农业机械学报, 2016, 47(S1): 285-290.
Li Yanhua, Zhang Miao, Zheng Jie, et al.ISE-based sensor fusion method for wet soil nitratenitrogen detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 285-290.
[16] 杜尚丰, 潘奇, 曹淑姝. 基于ISE的土壤硝态氮多参数检测仪研究[J]. 农业机械学报, 2017, 48(S1): 277-283, 301.
Du Shangfeng, Pan Qi, Cao Shushu.Development of soil nitratenitrogen detection device with multiple parameters based on ISE [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 277-283, 301.
[17] 路逍, 潘林沛, 李雁华, 等. 基于ISE的土壤硝态氮原位检测模型比较[J]. 农业机械学报, 2021, 52(S1): 297-303.
Lu Xiao, Pan Linpei, Li Yanhua, et al.Comprison of detection models for soil nitrate concentration based on ISE [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 297-303.
[18] 李希灿, 王静, 李玉环, 等. 基于模糊集分析的土壤质量指标高光谱反演[J]. 地理与地理信息科学, 2008, 24(4): 25-28.
Li Xican, Wang Jing, Li Yuhuan, et al.High spectral retrieved deduction of soil quality index based on fuzzy sets analysis [J]. Geography and GeoInformation Science, 2008, 24(4): 25-28.
[19] 郭志新, 梁亮, 何见. 一种林地土壤氮磷钾含量快速测定的新方法[J]. 中国农学通报, 2011, 27(2): 61-65.
Guo Zhixin, Liang Liang,He Jian. A new method for rapid measurement of N, P, K contents of forest soil [J]. Chinese Agricultural Science Bulletin, 2011, 27(2): 61-65.
[20] Mouazen A M, Kuang B. Online visible and near infrared spectroscopy for infield phosphorous management [J]. Soil and Tillage Research, 2016, 155: 471-477.
[21] 侯广利, 李雪莹, 邱慧敏, 等. 土壤磷形态的反射光谱特征及其光谱建模[J]. 山东科学, 2021, 34(1): 82-88.
Hou Guangli, Li Xueying, Qiu Huimin, et al.The reflectance spectra characteristics of soil phosphorus fractions and their spectral model [J]. Shandong Science, 2021, 34(1): 82-88.
[22] Cohen M, Mylavarapu R S, Bogrekci I, et al. Reflectance spectroscopy for routine agronomic soil analyses [J]. Soil Science, 2007, 172(6): 469-485.
[23] Maleki M, Van Holm L, Ramon H, et al. Phosphorus sensing for fresh soils using visible and near infrared spectroscopy [J]. Biosystems Engineering, 2006, 95(3): 425-436.
[24] Mouazen A M, Maleki M, De Baerdemaeker J, et al. Online measurement of some selected soil properties using a VISNIR sensor [J]. Soil and Tillage Research, 2007, 93(1): 13-27.
[25] Pungor E, Toth K, Havas J. Theorie und Anwendung der heterogenen Gummimembranelektroden für die Bestimmung einiger Ionen [J]. Microchimica Acta, 1966, 54: 689-698.
[26] Lemos S, Menezes E, Chaves F, et al. In situ soil phosphorus monitoring probe compared with conventional extraction procedures [J]. Communications in Soil Science and Plant Analysis, 2009, 40(7-8): 1282-1294.
[27] Satoh H, Miyazaki Y, Taniuchi S, et al. Improvement of a phosphate ionselective microsensor using Bis (dibromophenylstannyl) methane as a carrier [J]. Analytical Sciences, 2017, 33(7): 825-830.
[28] Topcu C, Caglar B, Onder A, et al. Structural characterization of chitosansmectite nanocomposite and its application in the development of a novel potentiometric monohydrogen phosphateselective sensor [J]. Materials Research Bulletin, 2018, 98: 288-299.
[29] Abbas M N, Radwan A L A, Nooredeen N M, et al. Selective phosphate sensing using copper monoaminophthalocyanine functionalized acrylate polymerbased solidstate electrode for FIA of environmental waters [J]. Journal of Solid State Electrochemistry, 2016, 20: 1599-1612.
[30] Barhoumi L, Baraket A, Nooredeen N M, et al. Silicon nitride capacitive chemical sensor for phosphate ion detection based on copper phthalocyanineacrylatepolymer [J]. Electroanalysis, 2017, 29(6): 1586-1595.
[31] Xiao D, Yuan H Y, Li J, et al. Surfacemodified cobaltbased sensor as a phosphatesensitive electrode [J]. Analytical Chemistry, 1995, 67(2): 288-291.
[32] 董陶, 张军军, 杨慧中. 磷酸盐离子选择电极的制作及其性能特性[J]. 自动化仪表, 2011, 32(9): 60-63.
Dong Tao, Zhang Junjun, Yang Huizhong.Manufacture and performance characteristic of the phosphate ion selective electrode [J]. Process Automation Instrumentation, 2011, 32(9): 60-63.
[33] 张军军, 杨慧中. 一种磷酸根离子选择电极的测量与补偿[J]. 传感器与微系统, 2011, 30(4): 124-126, 130.
Zhang Junjun, Yang Huizhong.Measurement and compensation of a phosphate ionselective electrode [J]. Transducer and Microsystem Technologies, 2011, 30(4): 124-126, 130.
[34] 吴世杰, 张海云, 逯文晶, 等. 基于钴的磷酸盐离子选择性电极研究[J]. 环境科学与技术, 2012, 35(S1): 234-238.
Wu Shijie, Zhang Haiyun, Lu Wenjing, et al.A new phosphate ion sensitive electrode based on cobalt [J]. Environmental Science & Technology, 2012, 35(S1): 234-238.
[35] Arvas M B, Gorduk O, Gencten M, et al. Preparation of a novel electrochemical sensor for phosphate detection based on a molybdenum blue modified poly (vinyl chloride) coated pencil graphite electrode [J]. Analytical Methods, 2019, 11(30): 3874-3881.
[36] Cinti S, Talarico D, Palleschi G, et al. Novel reagentless paperbased screenprinted electrochemical sensor to detect phosphate [J]. Analytica Chimica Acta, 2016, 919:78-84.
[37] Li Y, Jiang T, Yu X, et al. Phosphate sensor using molybdenum [J]. Journal of the Electrochemical Society, 2016, 163(9): B479.
[38] 徐永明, 蔺启忠, 王璐, 等. 基于高分辨率反射光谱的土壤营养元素估算模型[J]. 土壤学报, 2006, 43(5): 709-716.
Xu Yongming, Lin Qizhong, Wang Lu, et al. Model for estimating soil nutrient elements based on high resolution reflectance spectra [J]. Acta Pedologica Sinica, 2006, 43(5): 709-716.
[39] 李伟, 张书慧, 张倩, 等. 近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量[J]. 农业工程学报, 2007, 23(1): 55-59.
Li Wei, Zhang Shuhui, Zhang Qian, et al. Rapid prediction of available N, P and K content in soil usingnear infrared reflectance spectroscopy [J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(1): 55-59.
[40] Detar W R, Chesson J H, Penner J V, et al. Detection of soil properties with airborne hyperspectral measurements of bare fields [J]. Transactions of the ASABE, 2008, 51(2): 463-470.
[41] 张淑娟, 王凤花, 张海红, 等. 基于主成分分析和BP神经网络的土壤养分近红外光谱检测[J]. 山西农业大学学报(自然科学版), 2009, 29(6): 483-487.
Zhang Shujuan, Wang Fenghua, Zhang Haihong, et al. Nearinfrared determination of soil nutrients based on principal component analysis and BP neural network [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2009, 29(6): 483-487.
[42] Hu G, Sudduth K A, He D, et al. Soil phosphorus and potassium estimation by reflectance spectroscopy [J]. Transactions of the ASABE, 2016, 59(1): 97-105.
[43] He Y, Huang M, García A, et al. Prediction of soil macronutrients content using near-infrared spectroscopy [J]. Computers and Electronics in Agriculture, 2007, 58(2): 144-153.
[44] Christy C D. Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy [J]. Computers and Electronics in Agriculture, 2008, 61(1): 10-19.
[45] Cies'la J, Ryz'ak M, Bieganowski A, et al. Use of ionselective electrodes for determination of content of potassium in EgnerRhiem soil extracts [J]. Research in Agricultural Engineering, 2007, 53(1): 29-33.
[46] Jaworska E, Lewandowski W, Mieczkowski J, et al. Critical assessment of graphene as iontoelectron transducer for allsolidstate potentiometric sensors [J]. Talanta, 2012, 97: 414-419.
[47] Fakih I, Centeno A, Zurutuza A, et al. High resolution potassium sensing with largearea graphene fieldeffect transistors [J]. Sensors and Actuators B: Chemical, 2019, 291: 89-95.
[48] Ning J, Lin X, Su F, et al. Development of a molecular K+ probe for colorimetric/fluorescent/photoacoustic detection of K+ [J]. Analytical and Bioanalytical Chemistry, 2020, 412: 6947-6957.
[49] Naderi M, Hosseini M, Ganjali M R. Naked-eye detection of potassium ions in a novel gold nanoparticle aggregationbased aptasensor [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 195: 75-83.
[50] Ping J, Wang Y, Wu J, et al. Development of an all-solid-state potassium ion-selective electrode using graphene as the solidcontact transducer [J]. Electrochemistry Communications, 2011, 13(12): 1529-1532.
[51] Lin Jianhan, Wang Maohua, Zhang Mao, et al. Development and modelling of a soil nitrate and potassium simultaneous rapid detection system based on ion selective electrodes [J]. New Zealand Journal of Agricultural Research, 2007, 50(5): 635-640.
[52] Kim H J, Hummel J W, Sudduth K A, et al. Simultaneous analysis of soil macronutrients using ion-selective electrodes [J]. Soil Science Society of America Journal, 2007, 71(6): 1867-7187.
|