[1] 潘贺, 关久念, 李太浩. 基于无线传感器网络的水产养殖水环境监测系统设计与试验[J]. 中国农机化学报, 2014, 35(5): 246-250.
Pan He, Guan Jiunian, Li Taihao. Design and test of aquaculture water environment monitoring system based on wireless sensor network [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(5): 246-250.
[2] 于秀丽. 内陆盐碱湿地土壤pH对土壤有机碳含量的影响[J]. 中国农机化学报, 2019, 40(11): 203-208.
Yu Xiuli. Effects of pH on the concentration of organic carbon in soils of inland salinealkali wetland [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11): 203-208.
[3] 赵敬晓. 紫外—可见光谱法水质COD检测技术研究[D]. 重庆: 重庆大学, 2015.
Zhao Jingxiao. Study on the methods of the measurement of COD in water using UVVIS spectroscopy method [D]. Chongqing: Chongqing University, 2015.
[4] Zhang X, Inoue T, Kato K, et al. Performance of hybrid subsurface constructed wetland system for piggery wastewater treatment [J]. Water Science & Technology, 2016, 73(1): 13-20.
[5] 杨茹. 分光光度学[M]. 北京: 机械工业出版社, 1998.
[6] 周昆鹏, 刘双硕, 崔健. 基于荧光发射光谱的水质化学需氧量的检测[J]. 光谱学与光谱分析, 2020, 40(4): 1143-1148.
Zhou Kunpeng, Liu Shangshuo, Cui Jian. Detection of Chemical Oxygen Demand (COD) of water quality based on fluorescence emission spectra [J]. Spectroscopy and Spectral Analysis, 2020, 40(4): 1143-1148.
[7] 吴德操, 魏彪, 汤戈, 等. 基于Mie散射的水体紫外—可见光谱浊度干扰补偿[J]. 光学学报, 2017, 37(2): 356-363.
Wu Decao, Wei Biao, Tang Ge, et al. Turbidity Disturbance Compensation for UVVIS spectrum of waterbody based on Mie scattering [J]. Acta Optical Sinica, 2017, 37(2): 356-363.
[8] Agustsson J, Akermann O, Barry D A, et al. Noncontact assessment of COD and turbidity concentrations in water using diffuse reflectance UVVis spectroscopy [J]. Environmental Science Processes & Impacts, 2014, 16(8): 1897-1902.
[9] 赵敏敏. 水质中两种总氮测定方法的比对分析[J]. 资源节约与环保, 2020, 13(8): 44-57.
[10] Agabo Garcia C, Hodaifa G. Real olive oil mill wastewater treatment by photoFenton system using artificial ultraviolet light lamps [J]. Journal of Cleaner Production, 2017, 162(20): 743-753.
[11] 邵敏超, 夏凤毅, 盛成龙, 等. 双波长紫外吸收法有机废水COD测量技术与仪器设计[J]. 环境工程学报, 2013, 7(1): 396-400.
Shao Minchao, Xia Fengyi, Sheng Chenglong, et al. Double wavelengths ultraviolet absorption method for organic wastewater COD measurement and its instrument design [J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 396-400.
[12] 余小柳, 魏彪, 汤斌, 等. 水质COD探测器光路设计仿真研究[J]. 计算机仿真, 2014, 31(7): 412-414, 424.
Yu Xiaoliu, Wei Biao, Tang Bin, et al. Optical design simulation study on new water COD detector [J]. Computer Simulation, 2014, 31(7): 412-414, 424.
[13] 汤斌, 魏彪, 毛本将, 等. 紫外—可见吸收光谱法水质检测系统的噪声分析与处理研究[J]. 激光与光电子学进展, 2014, 51(4): 197-203.
Tang Bin, Wei Biao, Mao Benjiang, et al. Noise analysis and denoising research on the UVvisible absorption spectroscopy water quality detection system [J]. Laser & Optoelectronics Progress, 2014, 51(4): 197-203.
[14] 汤斌, 赵敬晓, 魏彪, 等. 一种紫外—可见光谱检测水质COD预测模型优化方法[J]. 中国环境科学, 2015, 35(2): 478-483.
Tang Bin, Zhao Jingxiao, Wei Biao, et al. A method of optimizing the prediction model for the determination of water COD by using UVvisible spectroscopy [J]. China Environmental Science, 2015, 35(2): 478-483.
[15] 吴国庆, 赵伟光. 基于拉曼光谱的海水COD检测方法的研究[J]. 应用光学, 2019, 40(2): 278-283.
Wu Guoqing, Zhao Weiguang. Seawater chemical oxygen demand optical detection method based on Raman spectroscopy [J]. Journal of Applied Optics, 2019, 40(2): 278-283.
[16] 张旭欣, 张嘉, 李新增, 等. 二值VGG卷积神经网络加速器优化设计[J]. 电子技术应用, 2021, 47(2): 20-23.
Zhang Xuxin, Zhang Jia, Li Xinzeng, et al. Optimization design of binary VGG convolutional neural network accelerator [J]. Application of Electronic Technique, 2021, 47(2): 20-23.
[17] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[18] 薛阳, 吴海东, 俞志程, 等. 基于深度学习的变压器图像识别系统[J]. 上海电力大学学报, 2021, 37(1): 51-56.
Xue Yang, Wu Haidong, Yu Zhicheng, et al. Transformer image recognition system based on deep learning [J]. Journal of Shanghai University of Electric Power, 2021, 37(1): 51-56.
[19] 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.
[20] 王子良, 金洪德, 李同同, 等. 基于CNN的矿井供电漏电保护研究[J]. 煤炭技术, 2021, 40(2): 154-158.
Wang Ziliang, Jin Hongde, Li Tongtong, et al. Research on mine power supply leakage protection based on CNN [J]. Coal Technology, 2021, 40(2): 154-158.
[21] Ganin Y, Ustinova E, Ajakan H, et al. Domainadversarial training of neural networks [J]. Journal of Machine Learning Research, 2017, 17(1): 2096-2030.
[22] Saenko K, Kulis B, Fritz M, et al. Adapting visual category models to new domains [C]. European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2010.
|