[ 1 ] 邓向武, 梁松, 齐龙, 等. 基于 DeepLabV3+ 的稻田苗期杂草语义分割方法研究[J]. 中国农机化学报, 2023, 44(4): 174-180.
Deng Xiangwu, Liang Song, Qi Long, et al. Method study on semantic segmentation of weeds at seedling stage in paddy fields based on DeepLabV3+ model [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 174-180.
[ 2 ] 姜红花, 王鹏飞, 张昭, 等. 基于卷积网络和哈希码的玉米田间杂草快速识别方法[J]. 农业机械学报, 2018, 49(11): 30-38.
[ 3 ] 张乐, 金秀, 傅雷扬, 等. 基于 Faster R-CNN 深度网络的油菜田间杂草识别方法[J]. 激光与光电子学进展, 2020, 57(2): 304-312.
[ 4 ] 刘成良, 林洪振, 李彦明, 等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报, 2020, 51(1): 1-18.
[ 5 ] 孙君亮, 闫银发, 李法德, 等. 智能除草机器人的研究进展与分析[J]. 中国农机化学报, 2019, 40(11): 73-80.
Sun Junliang, Yan Yinfa, Li Fade, et al. Research progress and analysis of intelligent weeding robot [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11): 73-80.
[ 6 ] 马志艳, 张徐康, 杨光友. 基于改进 Mask R-CNN 的水稻茎秆杂质分割方法研究[J]. 中国农机化学报, 2021, 42(6): 145-150.
Ma Zhiyan, Zhang Xukang, Yang Guangyou. Research on segmentation method of rice stem impurities based on improved Mask R-CNN [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 145-150.
[ 7 ] Pulido C, Solaque L, Velasco N. Weed recognition by SVM texture feature classification in outdoor vegetable crop images [J]. Ingeniería e Investigación, 2017, 37(1): 68-74.
[ 8 ] 张新明, 涂强, 冯梦清. 基于改进概率神经网络的玉米与杂草识别[J]. 山西大学学报(自然科学版), 2015, 38(3): 432-438.
[ 9 ] 樊湘鹏, 周建平, 许燕, 等. 基于优化 Faster R-CNN 的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34.
[10] 王璨, 武新慧, 张燕青, 等. 基于双注意力语义分割网络的田间苗期玉米识别与分割[J]. 农业工程学报, 2021, 37(9): 211-221.
[11] Huang H, Deng J, Lan Y, et al. Accurate weed mapping and prescription map generation based on fully convolutional networks using UAV imagery [J]. Sensors, 2018, 18(10): 3299.
[12] Girshick R, Donahue J, Darrell T, et al. Region‑based convolutional networks for accurate object detection and segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(1): 142-158.
[13] Girshick R. Fast R-CNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[14] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real‑time object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28.
[15] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real‑time object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[16] Li C, Li L, Jiang H, et al. YOLOv6: A single‑stage object detection framework for industrial applications [J]. arXiv Preprint arXiv: 2209. 02976, 2022.
[17] Wang C, Bochkovskiy A, Liao H. YOLOv7: Trainable bag‑of‑freebies sets new state‑of‑the‑art for real‑time object detectors [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[18] Wei L, Dragomir A, Dumitru E, et al, SSD: Single shot multibox detector [J]. Proceedings of the European Conference on Computer Vision (ECCV), 2016: 21-37.
[19] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[20] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [C]. International Conference on Medical Image Computing and Computer‑Assisted Intervention, 2015.
[21] Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs [J]. arXiv Preprint arXiv: 1412. 7062, 2014.
[22] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[23] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation [J]. arXiv Preprint arXiv: 1706. 05587, 2017.
[24] Chen L C, Zhu Y, Papandreou G, et al. Encoder‑decoder with atrous separable convolution for semantic image segmentation [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 801-818.
[25] Zhang H, Wu C, Zhang Z, et al. ResNeSt: Split‑attention networks [J]. arXiv Preprint arXiv: 2004. 08955, 2020.
[26] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[27] Yu C, Wang J, Peng C, et al. BiseNet: Bilateral segmentation network for real‑time semantic segmentation [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 325-341.
|