[1] 杨侗瑨, 王祖力, 刘小红, 等. 2021年中国生猪产业发展情况及2022年趋势[J]. 中国猪业, 2022, 17(1): 19-24.
[2] 丁琳琳, 孟军. 两种模型对中国生猪价格预测效果的比较[J]. 统计与决策, 2012(4): 74-76.
[3] Kurumatani K. Time series forecasting of agricultural product prices based on recurrent neural networks and its evaluation method [J]. SN Applied Sciences, 2020, 2(8): 1434.
[4] 刘怡然, 王东杰, 邓雪峰, 等. 基于长短时记忆神经网络的生猪价格预测模型[J]. 江苏大学学报(自然科学版), 2021, 42 (2): 190-197.
Liu Yiran, Wang Dongjie, Deng Xuefeng, et al. Prediction method of hog price based on long short term memory network model [J]. Journal of Jiangsu University (Natural Science Edition), 2021, 42(2): 190-197.
[5] 王泽鹏, 陈晓燕, 庞涛, 等. 一种基于改进时间卷积网络的生猪价格预测方法[J]. 中国农业大学学报, 2021, 26(12): 137-144.
Wang Zepeng, Chen Xiaoyan, Pang Tao, et al. A hog price prediction method based on improved temporal convolutional network [J]. Journal of China Agricultural University, 2021, 26(12): 137-144.
[6] 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784.
Wang Xin, Wu Ji, Liu Chao, et al. Exploring LSTM based recurrent neural network for failure time series prediction [J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784.
[7] 李静, 徐路路. 基于机器学习算法的研究热点趋势预测模型对比与分析——BP神经网络、支持向量机与LSTM模型[J]. 现代情报, 2019, 39(4): 23-33.
Li Jing, Xu Lulu. Comparison and analysis of research trend prediction models based on machine learning algorithm: BP neural network, support vector machine and LSTM model [J]. Journal of Modern Information, 2019, 39(4): 23-33.
[8] 胡剑波, 罗志鹏, 李峰. “碳达峰”目标下中国碳排放强度预测——基于LSTM和ARIMABP模型的分析[J]. 财经科学, 2022(2): 89-101.
Hu Jianbo, Luo Zhipeng, Li Feng. Prediction of Chinas carbon emission intensity under the goal of carbon peak: Analysis based on LSTM and ARIMABP model [J]. Finance & Economics, 2022(2): 89-101.
[9] 刘峰, 王儒敬, 李传席. ARIMA模型在农产品价格预测中的应用[J]. 计算机工程与应用, 2009, 45(25): 238-239.
Liu Feng, Wang Rujing, Li Chuanxi. Application of ARIMA model in forecasting agricultural product price [J]. Computer Engineering and Applications, 2009, 45(25): 238-239.
[10] 翟静, 曹俊. 基于时间序列ARIMA与BP神经网络的组合预测模型[J]. 统计与决策, 2016(4): 29-32.
[11] 彭红星, 郑楷航, 黄国彬, 等. 基于BP、LSTM和ARIMA模型的蔬菜价格预测[J]. 中国农机化学报, 2020, 41(4): 193-199.
Peng Hongxing, Zheng Kaihang, Huang Guobin, et al. Vegetable price prediction based on BP, LSTM and ARIMA models [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(4): 193-199.
[12] Jannah M, Sadik K, Afendi F M. Study of forecasting method for agricultural products using hybrid ANNGARCH approach [J]. Journal of Physics: Conference Series, 2021, 1863(1): 12052-12056.
[13] 梁小珍, 郭战坤, 张倩文, 等. 基于奇异谱分析的航空客运需求分析与分解集成预测模型[J]. 系统工程理论与实践, 2020, 40(7): 1844-1855.
Liang Xiaozhen, Guo Zhankun, Zhang Qianwen, et al. An analysis and decomposition ensemble prediction model for air passenger demand based on singular spectrum analysis [J]. Systems Engineering Theory & Practice, 2020, 40(7): 1844-1855.
[14] 王勇, 刘莹, 张娜. 基于奇异谱分析的旅游人数集成预测模型的研究与应用: 以中国为例[J]. 系统科学与数学, 2020, 40(9): 1628-1643.
Wang Yong, Liu Ying, Zhang Na. Research and application of integrated forecast model for number of tourists based on singular spectrum analysis: A case study of China [J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(9): 1628-1643.
|