[1] 吕志明, 潘凤荣, 闫明伟, 等. 大连市甜樱桃产业发展历史、现状及趋势[J]. 落叶果树, 2018, 50(3): 29-32.Lü Zhiming, Pan Fengrong, Yan Mingwei, et al. History, current situation and trend of sweet cherry industry in Dalian [J]. Deciduous Fruits, 2018, 50(3): 29-32.
[2] Sekse L. Fruit cracking in sweet cherries (Prunus avium L.) Some physiological aspects—A mini review [J]. Scientia Horticulturae, 1995, 63(3-4): 135-141.
[3] Kuremoto T, Kimura S, Kobayashi K, et al. Time series forecasting using a deep belief network with restricted Boltzmann machines [J]. Neurocomputing, 2014, 137: 47-56.
[4] Meka R, Alaeddini A, Bhaganagar K. A robust deep learning framework for shortterm wind power forecast of a fullscale wind farm using atmospheric variables [J]. Energy, 2021, 221: 119759.
[5] Cui Z, Henrickson K, Ke R, et al. Traffic graph convolutional recurrent neural network: A deep learning framework for networkscale traffic learning and forecasting [J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(11): 4883-4894.
[6] Yalcin H. Plant phenology recognition using deep learning: DeepPheno [C]. 2017 6th International Conference on AgroGeoinformatics. IEEE, 2017: 1-5.
[7] Pereira D R, Papa J P, Saraiva G F R, et al. Automatic classification of plant electrophysiological responses to environmental stimuli using machine learning and interval arithmetic [J]. Computers and Electronics in Agriculture, 2018, 145: 35-42.
[8] Yu H, Chen Y, Hassan S G, et al. Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO [J]. Computers and Electronics in Agriculture, 2016, 122: 94-102.
[9] 彭文, 王金睿, 尹山青. 电力市场中基于AttentionLSTM的短期负荷预测模型[J]. 电网技术, 2019, 43(5): 1745-1751.
Peng Wen, Wang Jinrui, Yin Shanqing, et al. Shortterm load forecasting model based on AttentionLSTM in electricity market [J]. Power System Technology, 2019, 43(5): 1745-1751.
[10] 朱铭康, 卢先领. 基于BiLSTMAttention模型的人体行为识别算法[J]. 激光与光电子学进展, 2019, 56(15): 153-161.
Zhu Mingkang, Lu Xianling. Human action recognition algorithm based on BiLSTMAttention model [J]. Laser & Optoelectronics Progress, 2019, 56(15): 153-161.
[11] 韦红霞. 大樱桃裂果的影响因素及对策[J]. 烟台果树, 2008(2): 48.
[12] 张永红, 葛徽衍, 王永茂, 等. 大棚樱桃裂果气象因素分析及防御技术[J]. 陕西农业科学, 2017, 63(2): 97-98, 102.
[13] 廖月枝, 严金娥, 邱政芳. 美早樱桃栽培管理技术要点[J]. 河北果树, 2021(4): 51, 54.
[14] Hochreiter S, Schmidhuber J. Long Shorttermmemory [J]. Neural Computation, 1997(8): 1735-1780.
[15] Bedi J, Toshniwal D. Empirical mode decomposition based deep learning for electricity demand forecasting [J]. IEEE Access, 2018, 6: 49144-49156.
[16] Zhao Z, Chen W, Wu X, et al. LSTM network: A deep learning approach for shortterm traffic forecast [J]. IET Intelligent Transport Systems, 2017, 11(2): 68-75.
[17] Zhang Y, Kong W, Dong Z Y, et al. Shortterm residential load forecasting based on LSTM recurrent neural network [J]. IEEE Transactions on Smart Grid, 2019.
[18] Luong M T, Pham H, Manning C D. Effective approaches to attentionbased neural machine translation [J]. arXiv Preprint arXiv: 1508.04025, 2015.
[19] Srinivas M, Patnaik L M. Genetic algorithms: A survey [J]. Computer, 1994, 27(6): 17-26.
|