[1]
李干琼, 许世卫, 李哲敏, 等. 农产品市场价格超短期预测研究——基于西红柿日批发价格的现代时间序列法建模[J]. 华中农业大学学报(社会科学版), 2010(6): 46-51.
Li Ganqiong, Xu Shiwei, Li Zhemin, et al. Study on super shortterm forecasting for market price of agroproducts—Based on modern times series modeling of daily wholesale price of tomatoes [J]. Journal of Huazhong Agricultural University(Social Sciences Edition), 2010(6): 46-51.
[2]
Jadhav V, Chinnappa R B, Gaddi G. Application of ARIMA model for forecasting agricultural prices [J]. Journal of Agricultural Science and Technology, 2017, 9(4): 981-992.
[3]
Nyoni T. Modeling and forecasting inflation in Kenya: Recent insights from ARIMA and GARCH analysis [J]. Dimorian Review, 2018, 5(6): 16-40.
[4]
刘雪, 刘锦涛, 李佳利, 等. 基于季节分解和长短期记忆的北京市鸡蛋价格预测[J]. 农业工程学报, 2020, 36(9): 331-340.
Liu Xue, Liu Jintao, Li Jiali, et al. Egg price forecasting in Beijing market using seasonaltrend decomposition procedures based on seasonal decomposition and longshort term memory [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 331-340.
[5]
Xiong T, Li C, Bao Y. Seasonal forecasting of agricultural commodity price using a hybrid STL and ELM method: Evidence from the vegetable market in China [J]. Neurocomputing, 2018, 275: 2831-2844.
[6]
Zhang D, Zang G, Li J, et al. Prediction of soybean price in China using QRRBF neural network model [J]. Computers and electronics in agriculture, 2018, 154: 10-17.
[7]
Moghar A, Hamiche M. Stock market prediction using LSTM recurrent neural network [J]. Procedia Computer Science, 2020, 170: 1168-1173.
[8]
Kurumatani K. Time series forecasting of agricultural product prices based on recurrent neural networks and its evaluation method [J]. SN Applied Sciences, 2020, 2(8): 1-17.
[9]
刘斌, 何进荣, 李远成, 等. 基于分布式神经网络的苹果价格预测方法[J]. 计算机应用, 2020, 40(2): 369-374.
Liu Bin, He Jinrong, Li Yuancheng, et al. Apple price prediction method based on distributed neural network [J]. Journal of Computer Applications, 2020, 40(2): 369-374.
[10]
Abidoye R B, Chan A P, Abidoye F A, et al. Predicting property price index using artificial intelligence techniques [J]. International Journal of Housing Markets and Analysis, 2019, 12(6): 1072-1092.
[11]
Airlangga G, Rachmat A, Lapihu D. Comparison of exponential smoothing and neural network method to forecast rice production in Indonesia [J]. Telkomnika, 2019, 17(3): 1367-1375.
[12]
徐任超, 阎威武, 王国良, 等. 基于周期性建模的时间序列预测方法及电价预测研究[J]. 自动化学报, 2020, 46(6): 1136-1144.
Xu Renchao, Yan Weiwu, Wang Guoliang, et al. Time series forecasting based on seasonality modeling and its application to electricity price forecasting [J]. Acta Automatica Sinica, 2020, 46(6): 1136-1144.
[13]
刘雪, 李亚妹, 刘娇, 等. 基于BP神经网络的鲜鸡蛋货架期预测模型[J]. 农业机械学报, 2015, 46(10): 328-334.
Liu Xue, Li Yamei, Liu Jiao, et al. BP neural network based prediction model for fresh eggs shelf life [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 328-334.
[14]
Chuentawat R, Loetyingyot S. Determination of artificial neural network structure with autoregressive form of ARIMA and genetic algorithm to forecast monthly paddy prices in Thailand [J]. International Journal of Intelligent Systems and Applications, 2019, 11(3): 22.
[15]
Büyük瘙塂ahin , Ertekin 瘙塁. Improving forecasting accuracy of time series data using a new ARIMAANN hybrid method and empirical mode decomposition [J]. Neurocomputing, 2019, 361: 151-163.
[16]
于卓熙, 秦璐, 赵志文, 等. 基于主成分分析与广义回归神经网络的股票价格预测[J]. 统计与决策, 2018, 34(18): 168-171.
[17]
Jianwei E, Ye J, Jin H. A novel hybrid model on the prediction of time series and its application for the gold price analysis and forecasting [J]. Physica A: Statistical Mechanics and its Applications, 2019, 527: 121454.
[18]
Shin S, Lee M, Song SK. A prediction model for agricultural products price with LSTM network [J]. The Journal of the Korea Contents Association, 2018, 18(11): 416-429.
[19]
贾宁, 郑纯军. 基于LSTMDA神经网络的农产品价格指数短期预测模型[J]. 计算机科学, 2019, 46(S2): 62-65, 71.
Jia Ning, Zheng Chunjun. Shortterm forecasting model of agricultural product price index based on LSTMDA neural network [J]. Computer Science, 2019, 46(S2): 62-65, 71.
[20]
Peng L, Liu S, Liu R, et al. Effective long shortterm memory with differential evolution algorithm for electricity price prediction [J]. Energy, 2018, 162: 1301-1314.
[21]
Yang B, Sun S, Li J, et al. Traffic flow prediction using LSTM with feature enhancement [J]. Neurocomputing, 2019, 332: 320-327.
[22]
宋刚, 张云峰, 包芳勋, 等. 基于粒子群优化LSTM的股票预测模型[J]. 北京航空航天大学学报, 2019, 45(12): 2533-2542.
Song Gang, Zhang Yunfeng, Bao Fangxun, et al. Stock prediction model based on particle swarm optimization LSTM [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2533-2542.
[23]
Alameer Z, Fathalla A, Li K, et al. Multistepahead forecasting of coal prices using a hybrid deep learning model [J]. Resources Policy, 2020, 65: 101588.
[24]
Niu H, Xu K, Wang W. A hybrid stock price index forecasting model based on variational mode decomposition and LSTM network [J]. Applied Intelligence, 2020, 50(12): 4296-4309.
[25]
赵鹏飞, 赵春江, 吴华瑞, 等. 基于注意力机制的农业文本命名实体识别[J]. 农业机械学报, 2021, 52(1): 185-192.
Zhao Pengfei, Zhao Chunjiang, Wu Huarui, et al. Named entity recognition of Chinese agricultural text based on attention mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 185-192.
[26]
Camilo Dagum. A new approach to the decomposition of the Gini income inequality ratio [J]. Empirical Economics, 1997, 22(4).
|