[1]
任艳敏, 刘玉, 潘瑜春, 等. 华北平原农田耕作便利度评价研究[J]. 农业机械学报, 2018, 49(12): 165-171.
Ren Yanmin, Liu Yu, Pan Yuchun, et al. Evaluation of farming convenience degree in North China plain [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12): 165-171
[2]
Yuanen G. The current situation and future of agricultural machinery industry in China [J]. Amaagricultural mechanization in asia africa and latin america, 2016, 47(2): 109-114.
[3]
Jeetendra P Aryal, Arun KhatriChhetri, Tek B Sapkota, et al. Adoption and economic impacts of laser land leveling in the irrigated ricewheat system in Haryana, India using endogenous switching regression [J]. Natural Resources Forum, 2020, 44(3).
[4]
Xianfan Wang, Jianhua Yang, Tengchao Huang. Design and fabrication of a highprecision 360° laser receiver for leveling applications [J]. Microwave and Optical Technology Letters, 2020, 62(9): 3023-3029.
[5]
陈君梅, 赵祚喜. 水田激光平地机水平控制系统的研究进展[J]. 中国农机化学报, 2014, 35(4): 98-102, 110.
Chen Junmei, Zhao Zuoxi. Research progress on the leveling control system of lasercontrolled paddy field leveler [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(4): 98-102, 110.
[6]
邢雅周, 孔德刚, 袁永伟, 等. 基于PLC的农田激光精平机自动控制系统的设计[J]. 中国农机化学报, 2015, 36(2): 242-245.
Xing Yazhou, Kong Degang, Yuan Yongwei, et al. Design of automatic control system for farmland laser leveling machine based on PLC [J]. Journal of Chinese Agricultural Mechanization, 2015, 36(2): 242-245.
[7]
李忠利, 刘小锋, 陈修魁, 等. 基于信息融合的拖拉机组合导航定位系统研究[J]. 农业机械学报, 2020, 51(8): 382-390, 399.
Li Zhongli, Liu Xiaofeng, Chen Xiukui, et al. Tractor integrated navigation and positioning system based on data fusion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 382-390, 399
[8]
Tong Xu, Siwei Chen, Dong Wang, et al. Bidirectional sliding window for boundary recognition of pavement construction area using GPSRTK [J]. Applied Sciences, 2020, 10(4).
[9]
王泷, 刘刚, 刘寅, 等. 基于GPS的农田坡面平整技术与试验[J]. 排灌机械工程学报, 2013, 31(5): 456-460.
Wang Long, Liu Gang, Liu Yin, et al. GPSbased land slope leveling technique and its implementation [J].Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(5): 456-460.
[10]
Ji Hongyang, Shu Guangzhu, Yu Lingzhang, et al. Design of ultrasound infrared compound distance measurement system based on LabVIEW[J]. Applied Mechanics and Materials, 2012, 1468(203): 109-112.
[11]
赖韬, 伊廷华, 王健宇, 等. 基于多速率卡尔曼滤波方法的位移和加速度数据融合[J]. 防灾减灾工程学报, 2012, 32(6): 707-713.
Lai Tao, Yi Tinghua, Wang Jianyu, et al. Data fusion of displacement and acceleration measurements based on multirate kalman filtering technique [J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(6): 707-713.
[12]
何友, 关欣, 王国宏. 多传感器信息融合研究进展与展望[J]. 宇航学报, 2005, 26(4): 524-530.
He You, Guan Xin, Wang Guohong. Survey on the progress and prospect of multisensor information fusion [J]. Journal of Astronautics, 2005, 26(4): 524-530.
[13]
V O Tishkin, E V Razina. Technique for obtaining digital models of sections of the human body, using the Handyscan 3D Revscan and Konica Minolta VI-910 laser 3D scanners [J]. Journal of Optical Technology, 2012, 79(9): 566-570.
[14]
李卫民, 赵文川, 马平平. 基于Handyscan 3D激光扫描仪的逆向技术研究[J]. 机床与液压, 2018, 46(7): 72-77.
Li Weimin, Zhao Wenchuan, Ma Pingping. Reverse technology reseach based on Handyscan 3D laser scanner [J]. Machine Tool & Hydraulics, 2018, 46(7): 72-77.
[15]
蒋啸虎, 佟金, 马云海, 等. 基于卡尔曼滤波融合算法的深松耕深检测装置研究[J]. 农业机械学报, 2020, 51(9): 53-60.
Jiang Xiaohu, Tong Jin, Ma Yunhai, et al. Study of tillage depth detecting device based on kalman filter and fusion algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 53-60.
[16]
〖JP4〗Junjia Yang, Yang Junjia, Qian Bing, et al. UAV altitude measurement method basedon data fusion and kalman filter [J]. Journal of physics. Conference series, 2020, 1631(1).
[17]
谭峰, 李成南, 萧红, 等. 基于LSTM循环神经网络的数控机床热误差预测方法[J]. 仪器仪表学报, 2020, 41(9): 79-87.
Tan Feng, Li Chengnan, Xiao Hong, et al. A thermal error prediction method for CNC machine tool based on LSTM recurrent neural network [J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 79-87.
[18]
Matteo S, Fabio D. Robustness of LSTM neural networks for multistep forecasting of chaotic time series [J]. Chaos, Solitons & Fractals, 2020, 139.
[19]
Ali H M, Mine K, Suleyman S K. Efficient online learning with improved LSTM neural networks [J]. Digital Signal Processing, 2020, 102.
[20]
〖JP3〗谢秋菊, 郑萍, 包军, 等. 基于深度学习的密闭式猪舍内温湿度预测模型[J]. 农业机械学报, 2020, 51(10): 353-361.
Xie Qiuju, Zheng Ping, Bao Jun, et al. Thermal environment prediction and validation based on deep learning algorithm in closed pig house [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 353-361.
|