[1] 张军国, 闫浩, 胡春鹤, 等. 无人机在林业中的应用及前景展望[J]. 林业工程学报, 2019, 4(1): 8-16.
Zhang Junguo, Yan Hao, Hu Chunhe, et al. Application and future development of unmanned aerial vehicle in forestry [J]. Journal of Forestry Engineering, 2019, 4(1): 8-16.
[2] Macfarlane D W, Kane B. Neighbour effects on tree architecture:Functional tradeoffs balancing crown competitiveness with wind resistance [J]. Functional Ecology, 2017, 31(8): 1624-1636.
[3] 孙钰, 周焱, 袁明帅, 等. 基于深度学习的森林虫害无人机实时监测方法[J]. 农业工程学报, 2018, 34(21): 74-81.
Sun Yu, Zhou Yan, Yuan Mingshuai, et al. UAV realtime monitoring for forest pest based on deep learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 74-81.
[4] Jia K, Yao Y J, Wei X Q, et al. A review on fractional vegetation cover estimation using remote sensing [J]. Advances in Earth Science, 2013, 28(7): 774-782.
[5] Fender A C, Gansert D, Jungkunst H F, et al. Rootinduced tree species effects on the source/sink strength for greenhouse gases (CH4, N2O and CO2) of a temperate deciduous forest soil [J]. Soil Biology and Biochemistry, 2013, 57: 587-597.
[6] 冯海林, 胡明越, 杨垠晖, 等. 基于树木整体图像和集成迁移学习的树种识别[J]. 农业机械学报, 2019, 50(8): 235-242.
Feng Hailin, Hu Mingyue, Yang Yinhui, et al. Tree species recognition based on overall tree image and ensemble of transfer learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 235-242.
[7] 滕文秀, 温小荣, 王妮, 等. 基于深度迁移学习的无人机高分影像树种分类与制图[J]. 激光与光电子学进展, 2019, 56(7): 277-286.
Teng Wenxiu, Wen Xiaorong, Wang Ni, et al. Tree species classification and mapping based on deep transfer learning with unmanned aerial vehicle high resolution images [J]. Laser & Optoelectronics Progress, 2019, 56(7): 277-286.
[8] 赵鹏超, 戚大伟. 基于卷积神经网络和树叶纹理的树种识别研究[J]. 森林工程, 2018, 34(1): 56-59.
Zhao Pengchao, Qi Dawei. Study on tree species identification based on convolution neural network and leaf texture image [J]. Forest Engineering, 2018, 34(1): 56-59.
[9] Zhao Y, Gao X, Hu J, et al. Tree species identification based on the fusion of bark and leaves [J]. Mathematical Biosciences and Engineering, 2020, 17(4): 4018-4033.
[10] Zhang B, Zhao L, Zhang X. Threedimensional convolutional neural network model for tree species classification using airborne hyperspectral images [J]. Remote Sensing of Environment, 2020, 247: 111938.
[11] 姜玉峰, 齐建国, 陈博伟, 等. 基于无人机高光谱影像和机器学习的红树林树种精细分类[J]. 遥感技术与应用, 2022, 36(6): 1416-1424.
Jiang Yufeng, Qi Jianguo, Chen Bowei, et al. Classification of mangrove species with UAV hyperspectral imagery and machine learning methods [J]. Remote Sensing Technology and Application, 2021, 36(6): 1416-1424.
[12] 赵庆展, 江萍, 王学文, 等. 基于无人机高光谱遥感影像的防护林树种分类[J]. 农业机械学报, 2021, 52(11): 190-199.
Zhao Qingzhan, Jiang Ping, Wang Xuewen, et al. Classification of protection forest tree species based on UAV hyperspectral data [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(11): 190-199.
[13] Michaowska M, Rapiński J. A review of tree species classification based on airborne LiDAR data and applied classifiers [J]. Remote Sensing, 2021, 13(3): 353.
[14] Disney M. Terrestrial LiDAR: A threedimensional revolution in how we look at trees [J]. New Phytologist, 2019, 222(4): 1736-1741.
[15] Terryn L, Calders K, Disney M, et al. Tree species classification using structural features derived from terrestrial laser scanning [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 170-181.
[16] Mizoguchi T, Ishii A, Nakamura H. Individual tree species classification based on terrestrial laser scanning using curvature estimation and convolutional neural network [J]. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2019, 42: 1077-1082.
[17] Guan H, Yu Y, Ji Z, et al. Deep learningbased tree classification using mobile LiDAR data [J]. Remote Sensing Letters, 2015, 6(11): 864-873.
[18] Seidel D, Annighfer P, Thielman A, et al. Predicting tree species from 3D laser scanning point clouds using deep learning [J]. Frontiers in Plant Science, 2021, 12: 635440.
[19] 王佳, 张隆裕, 吕春东, 等. 基于地面激光雷达点云数据的树种识别方法[J]. 农业机械学报, 2018, 49(11):180-188.
Wang Jia, Zhang Longyu, Lü Chundong, et al. Tree species identification methods based on point cloud data using groundbased LiDAR [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 180-188.
[20] Qi C R, Su H, Mo K, et al. PointNet: Deep learning on point sets for 3D classification and segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
[21] Qi C R, Yi L, Su H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space [J]. Advances in neural Information Processing Systems, 2017, 30.
[22] Liu M, Han Z, Chen Y, et al. Tree species classification of LiDAR data based on 3D deep learning [J]. Measurement, 2021, 177: 109301.
[23] Chen J, Chen Y, Liu Z. Classification of typical tree species in laser point cloud based on deep learning [J]. Remote Sensing, 2021, 13(23): 4750.
[24] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|