[1]
蒋阳辉. 基于用户兴趣模型的个性化农业搜索引擎的研究与实现[D]. 杨凌: 西北农林科技大学, 2016.
Jiang Yanghui. Research and implementation of personalized agricultural search engine based on user interest model [D]. Yangling: Northwest A & F University, 2016.
[2]
王松磊. 基于机器人知识图谱的智能问答系统的设计与实现[D]. 哈尔滨: 哈尔滨师范大学, 2020.
Wang Songlei. Design and implementation of intelligent question answering system based on robot knowledge graph [D]. Harbin: Harbin Normal University, 2020.
[3]
王东升, 王卫民, 王石, 等. 面向限定领域问答系统的自然语言理解方法综述[J]. 计算机科学, 2017, 44(8): 1-8, 41.
Wang Dongsheng, Wang Weimin, Wang Shi, et al. Research on domainspecific question answering system oriented natural language understanding [J]. Computer Science, 2017, 44(8): 1-8, 41.
[4]
李忠义, 韦彩会, 何铁光, 等. 基于学科知识图谱的紫云英研究态势分析[J]. 中国农机化学报, 2020, 41(7): 207-214.
Li Zhongyi, Wei Caihui, He Tieguang, et al. Research status on Chinese milk vetch (Astragalus sinicus) based on the discipline knowledge map [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 207-214.
[5]
李忠义, 何铁光, 唐红琴, 等. 中国绿肥研究知识图谱——基于CiteSpace的可视化分析[J]. 中国农机化学报, 2019, 40(7): 157-164.
Li Zhongyi, He Tieguang, Tang Hongqin, et al. Knowledge mapping analysis of green manure research based on CiteSpace [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(7): 157-164.
[6]
John K, Timothy M W. Sources of value creation in aggregator platforms for digital services in agricultureinsights from likely users in Kenya [J]. Digital Business, 2021, 2.
[7]
刘波, 沈岳, 郭平, 等. 数字湖南农业信息化建设关键策略探索[J]. 软件, 2013, 34(10): 1-5, 14.
Liu Bo, Shen Yue, Guo Ping, et al. The key strategies exploration based on the digital Hunan agricultural information construction [J]. Software, 2013, 34(10): 1-5, 14.
[8]
闫立华. 基于知识图谱的葡萄病虫害自动问答系统[D]. 杨凌: 西北农林科技大学, 2021.
Yan Lihua. Automatic question answering system for grape diseases and pests based on knowledge graph [D]. Yangling: Northwest A & F University, 2021
[9]
Luo Ming, Zhou Guohua, Wei Wei. Study of the game model of ECommerce information sharing in an agricultural product supply chain based on fuzzy big data and LSGDM [J]. Technological Forecasting and Social Change, 2021, 172: 121017.
[10]
Qin Hongchen, Yao Yiheng. Agriculture knowledge graph construction and application [J]. Journal of Physics: Conference Series, 2021, 1756: 012010.
[11]
王红, 张青青, 蔡伟伟, 等. 基于Neo4j的领域本体存储方法研究[J]. 计算机应用研究, 2017, 34(8): 2404-2407.
Wang Hong, Zhang Qingqing, Cai Weiwei, et al. Research on storage method for domain ontology based on Neo4j [J]. Application Research of Computers, 2017, 34(8): 2404-2407.
[12]
李雪. 一种基于 Neo4j 图数据库的模糊查询研究与实现[J]. 计算机技术与发展, 2018, 28(11): 78-86.
Li Xue. Research and implementation of a fuzzy query based on Neo4j graph database [J]. Compute Technology and Development, 2018, 28(11): 78-86.
[13]
张金山. 基于深度学习的医疗知识图谱问答系统[D]. 济南: 济南大学, 2021.
Zhang Jinshan. Question answering system of medical knowledge graph based on deep learning [D]. Jinan: University of Jinan, 2021.
[14]
Arbr P, Daniela M. Modeling and processing big data of power transmission grid substation using Neo4j [J]. Procedia Computer Science, 2017, 113.
[15]
刘超, 马东宇. 智能问答的聊天机器人系统的设计与实现[J]. 信息技术, 2017(5): 176-177, 180.
Liu Chao, Ma Dongyu. Design and implementation of chat robot based on intelligent questionanswer system [J]. Information Technology, 2017(5): 176-177, 180.
[16]
Zhang Qiang, Yu Huiqian, Sun Peng, et al. Multisource data based agricultural drought monitoring and agricultural loss in China [J]. Global and planetary change, 2019, 172: 298-306.
[17]
张芳容, 杨青. 知识库问答系统中实体关系抽取方法研究[J]. 计算机工程与应用, 2020, 56(11): 219-224.
Zhang Fangrong, Yang Qing. Research on entity relation extraction method in knowledgeBased question answering [J]. Computer Engineering and Applications, 2017(5): 176-177, 180.
[18]
Zhang Yan, Zhang Mingli, Luo Nan, et al. Understanding the formation mechanism of highquality knowledge in social question and answer communities: A knowledge cocreation perspective [J]. International Journal of Information Management, 2019, 48(11): 72-84.
[19]
Dong L, Wei F, Zhou M, et al. Question answering over freebase with multiColumn convolutional neural networks [J]. International Joint Conference on Natural Language Processing, 2015.
[20]
宋晨勇, 白皓然, 孙伟皓, 等. 基于GoogLeNet改进模型的苹果叶病诊断系统设计[J]. 中国农机化学报, 2021, 42(7): 148-155.
Song Chenyong, Bai Haoran, Sun Weihao, et al. Design of apple leaf disease diagnosis system based on GoogLeNet improve model [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(7): 148-155.
|