[1] Ampatzidis Y, Bellis L D, Luvisi A. iPathology: Robotic applications and management of plants and plant diseases [J]. Sustainability, 2017, 9(6): 1010-1023.
[2] Cruz A C, Luvisi A, Bellis L D, et al. X-FIDO: An effective application for detecting olive quick decline syndrome with deep learning and data fusion [J]. Frontiers in Plant Science, 2017(8).
[3] Sammany M, Zagloul K. Support vector machine versus an optimized neural networks fro diagnosing plant diseases [C]. Proceeding of Second International Computer Engineering Conference, 2006: 26-28.
[4] Sammany M, Medhat T. Dimensionality reduction using rough set approach for two neural networksbased applications [C]. International Conference on Rough Sets and Intelligent Systems Paradigms. Springer, Berlin, Heidelberg, 2007: 639-647.
[5] Sabrol H, Satish K. Tomato plant disease classification in digital images using classification tree [C]. 2016 International Conference on Communication and Signal Processing (ICCSP), IEEE, 2016.
[6] Mohanty S P, Hughes D P, Salathé M. Using deep learning for imagebased plant disease detection [J]. Frontiers in Plant Science, 2016(7): 1-10.
[7] Zhang P, Yang L, Li D. EfficientNet-B4-Ranger: A novel method for greenhouse cucumber disease recognition under natural complex environment [J]. Computers and Electronics in Agriculture, 2020, 176.
[8] Li Z, Yang Y, Li Y, et al. A solanaceae disease recognition model based on SEInception [J]. Computers and Electronics in Agriculture, 2020, 178.
[9] Too E C, Yujian L, Njuki S, et al. A comparative study of finetuning deep learning models for plant disease identification [J]. Computers and Electronics in Agriculture, 2019, 161.
[10] Zhang M, Li X, Xu M, et al. Image segmentation and classification for sickle cell disease using deformable U-Net [J]. arXiv, 2017.
[11] Yang J, Qiu K. An improved segmentation algorithm of CT image based on U-Net network and attention mechanism [J]. Multimedia Tools and Applications, 2021, 81(25): 1-24.
[12] Ngugi L C, Abelwahab M, AboZahhad M. Tomato leaf segmentation algorithms for mobile phone applications using deep learning [J]. Computers and Electronics in Agriculture, 2020, 178: 105788.
[13] Lin K, Gong L, Huang Y, et al. Deep learningbased segmentation and quantification of cucumber powdery mildew using convolutional neural network [J]. Frontiers in Plant Science, 2019(10): 155.
[14] 张善文, 王振, 王祖良. 多尺度融合卷积神经网络的黄瓜病害叶片图像分割方法[J]. 农业工程学报, 2020, 36(16): 149-157.
Zhang Shanwen, Wang Zhen, Wang Zuliang. Method for image segmentation of cucumber disease leaves based on multiscale fusion convolutional neural networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 149-157.
[15] 任守纲, 贾馥玮, 顾兴健, 等. 反卷积引导的番茄叶部病害识别及病斑分割模型[J]. 农业工程学报, 2020, 36(12): 186-195.
Ren Shougang, Jia Fuwei, Gu Xingjian, et al. Recognition and segmentation model of tomato leaf diseases based on deconvolutionguiding [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 186-195.
[16] Liang Q, Xiang S, Hu Y, et al. PD2SE-Net: Computerassisted plant disease diagnosis and severity estimation network [J]. Computers and Electronics in Agriculture, 2019, 157: 518-529.
[17] 郑志雄, 齐龙, 马旭, 等. 基于高光谱成像技术的水稻叶瘟病病害程度分级方法[J]. 农业工程学报, 2013, 29(19): 138-144.
Zheng Zhixiong, Qi Long, Ma Xu, et al. Grading method of rice leaf blast using hyperspectral imaging technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(19): 138-144.
[18] 刘宝洋. 基于机器视觉的黄瓜叶部病害程度检测系统研究[D]. 西安: 西京学院, 2020.
Liu Baoyang. Research on the detection system of cucumber leaf diseases based on machine vision [J]. Xian: Xijing University, 2020.
[19] Wspanialy P, Moussa M. A detection and severity estimation system for generic diseases of tomato greenhouse plants [J]. Computers and Electronics in Agriculture, 2020, 178.
[20] Chen L C, Zhu Y, Papandreou G, et al. Encoderdecoder with atrous separable convolution for semantic image segmentation [J]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 801-818.
[21] Yu F, Koltun V. MultiScalecontext aggregation by dilated convolutions [C]. ICLR. 2016.
[22] Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs [J]. Computer Science, 2014(4): 357-361.
[23] Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications [J]. arXiv, 2017.
[24] Onneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [J]. Springer International Publishing, 2015.
[25] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651.
[26] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [J]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 770-778.
[27] Chollet F. Xception: Deep learning with depthwise separable convolutions [J]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 1251-1258.
[28] Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoderdecoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[29] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890.
|