[1]
国家统计局. 中国统计年鉴[J]. 北京: 中国统计出版社, 2021.
[2]
刘继展. 温室采摘机器人技术研究进展分析[J]. 农业机械学报, 2017, 48(12): 1-18.
Liu Jizhan. Research progress analysis of robotic harvesting technologies in greenhouse [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 1-18.
[3]
梁喜凤, 章艳. 串番茄采摘点的识别方法[J]. 中国农机化学报, 2016, 37(11): 131-134.
Liang Xifeng, Zhang Yan. Recognition method of picking point for tomato cluster [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(11): 131- 134.
[4]
Xiong Juntao, Lin Rui, Liu Zhen, et al. The recognition of litchi clusters and the calculation of picking point in a nocturnal natural environment [J]. Biosystems Engineering, 2018, 166: 44-57.
[5]
苗玉彬, 王浙明, 刘秦. 水果轮廓特征提取的Zernike矩分水岭分割方法[J]. 农业工程学报, 2013, 29(1): 158-163.
Miao Yubin, Wang Zheming, Liu Qin. Application of Zernikemomentbased watershed segmentation on fruit features extraction [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1): 158-163.
[6]
马本学, 贾艳婷, 梅卫江, 等. 不同自然场景下葡萄果实识别方法研究[J]. 现代食品科技, 2015, 31(9): 145-149.
Ma Benxue, Jia Yanting, Mei Weijiang, et al. Study on the recognition method of grape in different natural environment [J]. Modern Food Science & Technology, 2015, 31(9): 145-149.
[7]
杨业娟, 屠莉. 基于蚁群算法的水果图像分割技术[J]. 江苏农业科学, 2014, 42(9): 380-382.
[8]
杨萍, 郭志成. 花椒采摘机器人视觉识别与定位求解[J]. 河北农业大学学报, 2020, 43(3): 121-129.
Yang Ping, Guo Zhicheng. Vision recognition and location solution of Zanthoxylum bungeanum picking robot [J]. Journal of Agricultural University of Hebei, 2020, 43(3): 121-129.
[9]
罗陆锋, 邹湘军, 熊俊涛, 等. 自然环境下葡萄采摘机器人采摘点的自动定位[J]. 农业工程学报, 2015, 31(2): 14-21.
Luo Lufeng, Zou Xiangjun, Xiong Juntao, et al. Automatic positioning for picking point of grape picking robot in natural environment [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 14-21.
[10]
熊俊涛, 何志良, 汤林越, 等. 非结构环境中扰动葡萄采摘点的视觉定位技术[J]. 农业机械学报, 2017, 48(4): 29-33.
Xiong Juntao, He Zhiliang, Tang Linyue, et al. Visual localization of disturbed grape picking point in nonstructural environment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 29-33.
[11]
雷旺雄, 卢军. 葡萄采摘机器人采摘点的视觉定位[J]. 江苏农业学报, 2020, 36(4): 1015-1021.
Lei Wangxiong, Lu Jun. Visual positioning method for picking point of grape picking robot [J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(4): 1015-1021.
[12]
Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoderdecoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[13]
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network [J]. IEEE Computer Society, 2016.
[14]
Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation [J]. arXiv: 1706.05587, 2017.
[15]
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[16]
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [J]. Springer, Cham, 2015.
[17]
孟琭, 徐磊, 郭嘉阳. 一种基于改进的MobileNetV2网络语义分割算法[J]. 电子学报, 2020, 48(9): 1769-1776.
Meng Lu, Xu Lei, Guo Jiayang. Semantic segmentation algorithm based on improved MobileNetV2 [J]. Acta Electronica Sinica, 2020, 48(9): 1769-1776.
[18]
Chollet F. Xception: Deep learning with depthwise separable convolutions [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[19]
Mungmode S, Sedamkar R R, Kulkarni N. An enhanced edge adaptive steganography approach using threshold value for region selection [J]. International Journal on Computational Science & Applications, 2015, 5(6): 55-67.
[20]
唐路路, 张启灿, 胡松. 一种自适应阈值的Canny边缘检测算法[J]. 光电工程, 2011(5): 131-136.
Tang Lulu, Zhang Qican, Hu Song. An improved algorithm for Canny edge detection with adaptive threshold [J]. OptoElectronic Engineering, 2011(5): 131-136.
|