[ 1 ] Xue Jinlin. Photovoltaic agriculture: New opportunity for photovoltaic applications in China [J]. Renewable and Sustainable Energy Reviews, 2017, 73(7): 1-9.
[ 2 ] 赵枫. 在新形势下我国光伏产业持续发展的思考[J]. 可再生能源, 2017, 35(8): 1181-1187.
[ 3 ] Dinesh H, Pearce J M. The potential of agrivoltaic systems [J]. Renewable and Sustainable Energy Reviews, 2016, 54: 299-308.
[ 4 ] Giri N C, Mohanty R C. Agrivoltaic system: Experimental analysis for enhancing land productivity and revenue of farmers [J]. Energy for Sustainable Development, 2022, 70: 54-61.
[ 5 ] 魏雯婧, 罗久富, 杨路培, 等. 农业光伏互补开发与盈利模式研究[J]. 太阳能学报, 2023, 44(3): 457-464.
[ 6 ] 杨新旺, 姚娟. “农光互补”项目后评价逻辑框架研究[J]. 现代工业经济和信息化, 2022, 12(4): 32-34.
[ 7 ] 林佳鸿. 基于固定和跟踪支架光伏发电系统的杭州光伏茶园微气候试验研究[D]. 杭州: 浙江大学, 2020.
[ 8 ] Hassanien R H E, Li M, Dong L W. Advanced applications of solar energy in agricultural greenhouses [J]. Renewable and Sustainable Energy Reviews, 2016, 54(2): 989-1001.
[ 9 ] 杨凯迪, 李国庆, 卢潇楠. 中国西北地区光伏电站对植被空间聚集的影响[J]. 太阳能, 2023(10): 38-44.
Yang Kaidi, Li Guoqing, Lu Xiaonan. Effects of PV power stations on vegetation spatial aggregation in northwest China [J]. Solar Energy, 2023(10): 38-44.
[10] 薛黎, 李志辉, 童方平,等. 遮荫对闽楠幼苗光合及其叶片解剖特性的影响[J]. 西北植物学报, 2019, 39(7): 1221-1229.
[11] 张夺霖, 袁宗琦, 李彦宝, 等. 不同遮荫处理对高寒草地狼毒种苗定居的影响[J]. 草地学报, 2024, 32(2): 503-509.
Zhang Duolin, Yuan Zongqi, Li Yanbao, et al. Effects of different shading treatments on seedling establishment of stellera chamaejasme in alpine grassland [J]. Acta Agrestia Sinica, 2024, 32(2): 503-509.
[12] 赵永红. 日光温室番茄高效栽培技术模式与效益分析[J]. 农业科技与装备, 2021(5): 1-2, 7.
[13] 魏来, 余明艳, 覃楠楠, 等. 农光耦合系统对田间光照条件和甘薯生长的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 288-295.
[14] Jiang Shouzheng, Tang Dahua, Zhao Lu, et al. Effects of different photovoltaic shading levels on kiwifruit growth, yield and water productivity under “agrivoltaic” system in Southwest China [J]. Agricultural Water Management, 2022, 269(11): 107675.
[15] Marrou H, Guilioni L, Dufour L, et al. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? [J]. Agricultural and Forest Meteorology, 2013, 177(10): 117-132.
[16] Kadowaki M, Yano A, Ishizu F, et al. Effects of greenhouse photovoltaic array shading on Welsh onion growth [J]. Biosystems Engineering, 2012, 111(3): 290-297.
[17] Yano A, Kadowaki M, Futue A, et al. Shading and electrical features of a photovoltaic array mounted inside the roof of an east‑west oriented greenhouse [J]. Biosystems Engineering, 2010, 106(4): 367-377.
[18] 王云鹏, 李红英, 姚玉璧, 等. 敦煌太阳总辐射多时间尺度变化特征及影响因素[J]. 干旱区研究, 2023, 40(12): 1885-1897.
Wang Yunpeng, Li Hongying, Yao Yubi, et al. Multi‑time scale change characteristics and influencing factors of total solar radiation in Dunhuang City [J]. Arid Zone Research, 2023, 40(12): 1885-1897.
[19] Kim S, Kim S, An K. An integrated multi‑modeling framework to estimate potential rice and energy production under an agrivoltaic system [J]. Computers and Electronics in Agriculture, 2023, 213(10): 108157.
[20] Kim S, Kim S. Optimization of the design of an agrophotovoltaic system in future climate conditions in South Korea [J]. Renewable Energy, 2023, 206: 928-938.
[21] Gonocruz R A, Nakamura R, Yoshino K, et al. Analysis of the rice yield under an agrivoltaic system: A case study in Japan [J]. Environments, 2021, 8(7): 65.
[22] Ahmed M S, Khan M R, Haque A, et al. Agrivoltaics analysis in a techno‑economic framework: Understanding why agrivoltaics on rice will always be profitable [J]. Applied Energy, 2022, 323(19): 119560.
|