Journal of Chinese Agricultural Mechanization ›› 2023, Vol. 44 ›› Issue (9): 137-145.DOI: 10.13733/j.jcam.issn.2095-5553.2023.09.020
Previous Articles Next Articles
Dong Ping1, Wang Ming1, Peng Fei2, Shi Lei1, Zhang Juanjuan1, Si Haiping1
Online:
2023-09-15
Published:
2023-10-07
董萍1,王明1,彭飞2,时雷1,张娟娟1,司海平1
基金资助:
CLC Number:
Dong Ping, Wang Ming, Peng Fei, Shi Lei, Zhang Juanjuan, Si Haiping. Research progress of crop disease monitoring and early warning based on Web of Science[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(9): 137-145.
董萍, 王明, 彭飞, 时雷, 张娟娟, 司海平. 基于Web of Science的作物病害监测和预警研究进展[J]. 中国农机化学报, 2023, 44(9): 137-145.
[1] Manavalan R. Automatic identification of diseases in grains crops through computational approaches:A review [J]. Computers and Electronics in Agriculture, 2020, 178: 105802. [2] Ang K L M, Seng J K P. Big data and machine learning with hyperspectral information in agriculture [J]. IEEE Access, 2021, 9: 36699-36718. [3] Ruwona J, Scherm H. Sensing and imaging of plant disease through the lens of science mapping [J]. Tropical Plant Pathology, 2022, 47(1): 74-84. [4] 宋勇, 陈兵, 王琼, 等. 无人机遥感监测作物病虫害研究进展[J]. 棉花学报, 2021, 33(3): 291-306. Song Yong, Chen Bing, Wang Qiong, et al. Research advances of crop diseases and insect pests monitoring by unmanned aerial vehicle remote sensing [J]. Cotton Science, 2021, 33(3): 291-306. [5] Chivasa W, Mutanga O,Biradar C. UAVBased multispectral phenotyping for disease resistance to accelerate crop improvement under changing climate conditions [J]. Remote Sensing, 2020, 12(15): 2445. [6] 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7): 1-18. Zhai Zhaoyu, Cao Yifei, Xu Huanliang, et al. Review of key techniques for crop disease and pest detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 1-18. [7] 张凝, 杨贵军, 赵春江, 等. 作物病虫害高光谱遥感进展与展望[J]. 遥感学报, 2021, 25(1): 403-422. Zhang Ning, Yang Guijun, Zhao Chunjiang, et al. Progress and prospects of hyperspectral remote sensing technology for crop diseases and pests [J]. National Remote Sensing Bulletin, 2021, 25(1): 403-422. [8] 白雪冰, 余建树, 傅泽田, 等. 光谱成像技术在作物病害检测中的应用进展与趋势[J]. 光谱学与光谱分析, 2020, 40(2): 350-355.Bai Xuebing, Yu Jianshu, Fu Zetian, et al. Application of spectral imaging technology for detecting crop disease information: A review [J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 350-355. [9] 刁智华, 袁万宾, 刁春迎, 等. 病害特征在作物病害识别中的应用研究综述[J]. 江苏农业科学, 2019, 47(5): 71-74.Diao Zhihua, Yuan Wanbin, Diao Chunying, et al. Application of disease characteristics in crop disease identification: A review [J]. Jiangsu Agricultural Sciences, 2019, 47(5): 71-74. [10] 竞霞, 邹琴, 白宗璠, 等. 基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展[J]. 作物学报, 2021, 47(11): 2067-2079. Jing Xia, Zou Qin, Bai Zongfan, et al. Research progress of crop diseases monitoring based on reflectance and chlorophyll fluorescence data [J]. Acta Agronomica Sinica, 2021, 47(11): 2067-2079. [11] Abade A, Ferreira P A, Vidal F D, et al. Plant diseases recognition on images using convolutional neural networks: A systematic review [J]. Computers and electronics in agriculture, 2021, 185. [12] Liu Z Q, Zhu Y J, Shi H B, et al. Recent progress in rice broadspectrum disease resistance [J]. International journal of molecular sciences, 2021, 22(21): 11658. [13] Fedele G, Brischetto C, Rossi V, et al. A systematic map of the research on disease modelling for agricultural crops worldwide [J]. Plants, 2022, 11(6): 724. [14] 曹天正, 韩冬梅, 宋献方, 等. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.Cao Tianzheng, Han Dongmei, Song Xianfang, et al. Bibliometric analysis of research progress on coastal surface water and groundwater interaction [J]. Advances in Earth Science, 2020, 35(2): 154-166. [15] 李继宇, 胡潇丹, 兰玉彬, 等. 基于文献计量学的2001—2020全球农用无人机研究进展[J]. 农业工程学报, 2021, 37(9): 328-339. Li Jiyu, Hu Xiaodan, Lan Yubin, et al. Research advance on worldwide agricultural UAVs in 2001—2020 based on bibliometrics [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 328-339. [16] 钟菊新, 唐红琴, 何铁光, 等. 基于文献计量法的土壤细菌研究进展[J]. 中国农机化学报, 2021, 42(12): 228-236. Zhong Juxin, Tang Hongqin, He Tieguang, et al. Research progress of soil bacteria based on bibliometrics [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(12): 228-236. [17] 李爽, 翟琰琦. 1999—2016年期刊《绿色化学》载文的计量分析[J]. 化学通报, 2018, 81(7): 660-666.Li Shuang, Zhai Yanqi. A metrology analysis of articles published on green chemistry from 1999 to 2016 [J]. Chemistry, 2018, 81(7): 660-666. [18] 贾少鹏, 高红菊, 杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报, 2019, 50(S1): 313-317. Jia Shaopeng, Gao Hongju, Hang Xiao. Research progress on image recognition technology of crop pests and diseases based on deep learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 313-317. [19] Tripathi A, Chourasia U,Dixit P. A survey: Plant disease detection using deep learning [J]. International Journal of Distributed Systems and Technologies, 2021, 12(3): 1-26. [20] Shi Y, Huang W J, Luo J, et al. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis [J]. Computers and Electronics in Agriculture, 2017, 141: 171-180. [21] Price D J S. Little science, big science [M]. NYC: Columbia University Press, 1963. [22] Math R M, Dharwadkar N V. Early detection and identification of grape diseases using convolutional neural networks [J]. Journal of plant diseases and protection, 2022, 129(3): 521-532. [23] Thangaraj R, Anandamurugan S, Kaliappan V K. Automated tomato leaf disease classification using transfer learningbased deep convolution neural network [J]. Journal of Plant Diseases and Protection, 2020, 128(1): 73-86. [24] Lee S. Deep structured learning: Architectures and applications [J]. The International Journal of Advanced Culture Technology, 2018, 6(4): 262-265. [25] 孙文斌, 王荣, 高荣华, 等. 基于可见光谱和改进注意力的农作物病害识别[J]. 光谱学与光谱分析, 2022, 42(5): 1572-1580. Sun Wenbin, Wang Rong, Gao Ronghua, et al. Crop diseases recognition based on visible spectrum and improved attention module [J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1572-1580. [26] Dar A A, Sharma S, Mahajan R, et al. Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches [J]. Journal of Integrative Agriculture, 2020, 19(12): 3013-3024. [27] 吾木提·艾山江, 尼加提·卡斯木, 陈晨, 等. 基于多维高光谱植被指数的冬小麦叶面积指数估算[J]. 农业机械学报, 2022, 53(5): 181-190. Umut Hasan, Nijat Kasim, Chen Chen, et al. Estimation of winter LAI based on multidimensional hyperspectral vegetation indices [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 181-190. [28] Beest D E T, Shaw M W, Paveley N D, et al. Evaluation of a predictive model for Mycosphaerella graminicola for economic and environmental benefits [J]. Plant Pathology, 2009, 58(6): 1001-1009. |
[1] | Tian Wenyong, , Mao Kun, Zhang Yihong, Wu Man, Chen Yu. Study on early warning of pollution load of livestock and poultry breeding in Guizhou [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(9): 59-65. |
[2] | Li Hongmei, Wu Jinji, Wang Liangming, Song Weidong, Zhao Qing, Li Yanying. Design and experiment of intelligent cultivation equipment for edible fungi [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 75-80. |
[3] | Zhang Xuanxuan, Tan Yu, Zhang Lina, Jiang Yiyu, Zhang Ran. Monitoring system for scoopwheel maize metering performance based on motor direct driving [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 155-161. |
[4] | Sun Xincheng, Zhang Zhongwu, Jiang Wan, Kang Jie, Yang Lianyong, Chen Weiping. Daily variation simulation and early warning model of temperature and humidity in unequal height greenhouse in Dongting Lake area [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 170-178. |
[5] | Wang Chuntao, , , , Liang Weijian, Guo Qingwen, Zhong Hao, Gan Yu, Xiao Deqin, , . Review on computervisionbased detection of agricultural pests [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 207-213. |
[6] | Sun Mengyao, Hu Bingbing, Chen Hua, Chen Yumei, Wu Caicong, Xu Lanjun. Operation quality assessment of unmanned wheat system based on UAV remote sensing [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(6): 148-154. |
[7] | Chen Jin, , Liu Yunqiang, , Wang Wei, Wang Lu, , Liu Lijing, . Research status and prospects of seeder monitoring system technology [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(6): 161-167. |
[8] | Chen Weina, Yang Zhong, Gu Shanshan, Tang Yujuan, Wang Yizhi. Design of intelligent agricultural environment monitoring system based on NB-IoT technology [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(6): 168-175. |
[9] | Ding Li, Xu Yufei, Qu Zhe, Dou Yufei, Wang Wanzhang, Li He. Design of test device for monitoring loss of wheat harvester during cleaning based on EDEM [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 13-21. |
[10] | Chen Yu, Yang Chuang, Tang Weidong, Zhang Jiutong, Jiang Meng. Design and experiment of control system of automatic feeding machine#br# #br# for cobreeding of young silkworm#br# [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 55-63. |
[11] | Ran Wenjing, Zhao Xiaoshun, Huo Xiaojing, Bai Wenjie, Tian Ruitao, Liu Shangkun. . Research on the application of vibration monitoring and vibration reduction technology in cultivated land preparation machinery [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 32-42. |
[12] | Tian Yong, Ding Suming, Xue Xinyu, Xu Yang, Sun Zhu, Jiao Yuxuan. . Research on the dosage monitoring method of diaphragm pump based on acoustic signal [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 142-149. |
[13] | Zhu Feiyu, Liu Muhua, Yuan Haichao, Zhao Jinhui, Yu Haojun. . Design of soil temperature and moisture monitoring system for vegetable field based on the Internet of Things [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 190-198. |
[14] | Han Changjie, Han Hongfei, You Jia, Rui Xue, Zhang Jing, Gao Jie.. Research and design of operation information monitoring system for automatic transplanter [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 60-65. |
[15] | Peng Xiaodong, Shi Lei, He Jing, Qi Haixia, Lan Yubin. . Application status and development trend of consumer RGB-D camera in the agricultural field [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 206-215. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 472
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 337
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296