Journal of Chinese Agricultural Mechanization ›› 2023, Vol. 44 ›› Issue (7): 207-213.DOI: 10.13733/j.jcam.issn.2095-5553.2023.07.028
Previous Articles Next Articles
Wang Chuntao1, 2, 3, 4, Liang Weijian1, Guo Qingwen1, Zhong Hao1, Gan Yu1, Xiao Deqin1, 2, 3
Online:
2023-07-15
Published:
2023-07-31
王春桃1, 2, 3, 4,梁炜健1,郭庆文1,钟浩1,甘雨1,肖德琴1, 2, 3
基金资助:
CLC Number:
Wang Chuntao, , , , Liang Weijian, Guo Qingwen, Zhong Hao, Gan Yu, Xiao Deqin, , . Review on computervisionbased detection of agricultural pests[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 207-213.
王春桃, , , , 梁炜健, 郭庆文, 钟浩, 甘雨, 肖德琴, , . 农业害虫智能视觉检测研究综述[J]. 中国农机化学报, 2023, 44(7): 207-213.
[1] 陈永宁, 周娜, 陈婕, 等. 我国蔬菜种业发展现状、融资结构及经营绩效研究[J]. 北方金融, 2023(2): 40-46. [2] 中华人民共和国农业农村部. 2021年保护地蔬菜重要害虫生物防治技术方案[EB/OL]. http://www.moa.gov.cn/gk/nszd_1/2021/202103/t20210311_6363457.htm, 2021-03-11. [3] Liu L, Ouyang W, Wang X, et al. Deep learning for generic object detection: A survey [J]. International Journal of Computer Vision, 2020, 128(2): 261-318. [4] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2018. [5] 韩瑞珍. 基于机器视觉的农田害虫快速检测与识别研究[D]. 杭州: 浙江大学, 2014.Han Ruizhen. Research on fast detection and identification of field pests based on machine vision [D]. Hangzhou: Zhejiang University, 2014. [6] Yao Q, Xian D, Liu Q, et al. Automated counting of rice planthoppers in paddy fields based on image processing [J]. Journal of Integrative Agriculture, 2014, 13(8): 1736-1745. [7] Yao Q, Chen G, Wang Z, et al. Automated detection and identification of whitebacked planthoppers in paddy fields using image processing [J]. Journal of Integrative Agriculture, 2017, 16(7): 1547-1557. [8] 杨国国. 基于机器视觉的中华稻蝗早期蝗蝻的识别和检测研究[D]. 杭州: 浙江大学, 2017.Yang Guoguo. The research of recognition and detection of oxya chinensis larva based on computer vision [D]. Hangzhou: Zhejiang University, 2017. [9] 田冉, 陈梅香, 董大明, 等. 红外传感器与机器视觉融合的果树害虫识别及计数方法[J]. 农业工程学报, 2016, 32(20): 195-201. Tian Ran, Chen Meixiang, Dong Daming, et al. Identification and counting method of orchard pests based on fusion method of infrared sensor and machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(20): 195-201. [10] Rustia D J A, Lin C E, Chung J Y, et al. Application of an image and environmental sensor network for automated greenhouse insect pest monitoring [J]. Journal of AsiaPacific Entomology, 2019, 23(1): 17-28. [11] 肖德琴, 张玉康, 范梅红, 等. 基于视觉感知的蔬菜害虫诱捕计数算法[J]. 农业机械学报, 2018, 49(3): 51-58. Xiao Deqin, Zhang Yukang, Fan Meihong, et al. Vegetable pest counting algorithm based on visual perception [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 51-58. [12] 卜俊怡, 孙国祥, 王迎旭, 等. 基于诱虫板图像的温室番茄作物害虫识别与监测方法[J]. 南京农业大学学报, 2021, 44(2): 373-383. Bu Junyi, Sun Guoxiang, Wang Yingxu, et al.Identification and monitoring method of tomato crop pests in greenhouse based on trapping board image [J]. Journal of Nanjing Agricultural University, 2021, 44(2): 373-383. [13] 邹修国, 丁为民, 刘德营, 等. 基于4种不变矩和BP神经网络的稻飞虱分类[J]. 农业工程学报, 2013, 29(18): 171-178. Zou Xiuguo, Ding Weimin, Liu Deying, et al. Classification of rice planthopper based on invariant moments and BP neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(18): 171-178. [14] 李震, 邓忠易, 洪添胜, 等. 基于神经网络的实蝇成虫图像识别算法[J]. 农业机械学报, 2017, 48(S1): 129-135. Li Zhen, Deng Zhongyi, Hong Tiansheng, et al. Image recognition algorithm for fruit flies based on bp neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 129-135. [15] 李震, 洪添胜, 曾祥业, 等. 基于K-means聚类的柑橘红蜘蛛图像目标识别[J]. 农业工程学报, 2012, 28(23): 147-153, 299. Li Zhen, Hong Tiansheng, Zeng Xiangye, et al. Citrus red mite image target identification based on K-means clustering [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(23): 147-153, 299. [16] 王志彬, 王开义, 张水发, 等. 基于K-means聚类和椭圆拟合方法的白粉虱计数算法[J]. 农业工程学报, 2014, 30(1): 105-112.Wang Zhibin, Wang Kaiyi, Zhang Shuifa, et al.Whiteflies counting with K-means clustering and ellipse fitting [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1): 105-112. [17] 李季, 杨淑婷, 马菁. 基于计算机视觉的枸杞虫害计数方法研究[J]. 宁夏农林科技, 2018, 59(10): 50-52.Li Ji, Yang Shuting, Ma Jing. Counting method of wolfberry pests based on computer vision [J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2018, 59(10): 50-52. [18] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks [C]. Curran Associates Inc. International Conference on Neural Information Processing Systems, 2012. [19] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. arXiv Preprint, 2014: 1409.1556. [20] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. CVPR. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, 2015: 1-9. [21] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. CVPR. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, 2016: 770-778. [22] Tan M, Le Q V. EfficientNetV2: Smaller models and faster training [J]. ArXiv Preprint, 2021: 2104.00298v3. [23] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014: 580-587. [24] Girshick R. Fast R-CNN [C]. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015: 1440-1448. [25] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [C]. Proceedings of Advances in Neural Information Processing Systems 2015, 2015: 91-99. [26] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Proceedings of the 29th IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 779-788. [27] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. Proceedings Lecture Notes in Computer Science. Computer Vision-14th European Conference (ECCV 2016), 2016: 21-37. [28] Liu Z, Gao J, Yang G, et al. Localization and classification of paddy field pests using a saliency map and deep convolutional neural network [J]. Scientific Reports, 2016, 6: 20410. [29] 杨国国, 鲍一丹, 刘子毅. 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J]. 农业工程学报, 2017, 33(6): 156-162.Yang Guoguo, Bao Yidan, Liu Ziyi. Localization and recognition of pests in tea plantation based on image saliency analysis and convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 156-162. [30] Jiao L, Dong S, Zhang S, et al. AF-RCNN: An anchorfree convolutional neural network for multicategories agricultural pest detection [J]. Computers and Electronics in Agriculture, 2020, 174: 105522. [31] Dong S, Wang R, Liu K, et al. CRA-Net: A channel recalibration feature pyramid network for detecting small pests [J]. Computers and Electronics in Agriculture, 2021, 191: 106518. [32] Wang R, Jiao L, Xie C, et al. S-RPN: Samplingbalanced region proposal network for small crop pest detection [J]. Computers and Electronics in Agriculture, 2021, 187: 106290. [33] Shen Y, Zhou H, Li J, et al. Detection of storedgrain insects using deep learning [J]. Computers and Electronics in Agriculture, 2018, 145: 319-325. [34] 肖德琴, 黄一桂, 张远琴, 等. 基于改进Faster R-CNN的田间黄板害虫检测算法[J]. 农业机械学报, 2021, 52(6): 242-251. Xiao Deqin, Huang Yigui, Zhang Yuanqin, et al. Pest detection algorithm of yellow plate in field based on improved Faster R-CNN [J]. Transactions of the Chinese Society for agricultural Machinery, 2021, 52(6): 242-251. [35] Li W, Wang D, Li M, et al. Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse [J]. Computers and Electronics in Agriculture, 2021, 183: 106048. [36] Li W, Chen P, Wang B, et al. Automatic localization and count of agricultural crop pests based on an improved deep learning pipeline [J]. Scientific Reports, 2019, 9: 7024-7033. [37] Wang F, Wang R, Xie C, et al. Fusing multiscale contextaware information representation for automatic infield pest detection and recognition[J]. Computers and Electronics in Agriculture, 2020, 169: 105222. [38] Liu L, Xie C, Wang R, et al. Deep learning based automatic multiclass wild pest monitoring approach using hybrid global and local activated features [J]. IEEE Transactions on Industrial Informatics, 2020, 17(11): 7589-7598. [39] Ding W, Taylor G. Automatic moth detection from trap images for pest management [J]. Computers and Electronics in Agriculture, 2016, 123: 17-28. [40] Partel V, Nunes L, Stansly P, et al. Automated visionbased system for monitoring Asian citrus psyllid in orchards utilizing artificial intelligence [J]. Computers and Electronics in Agriculture, 2019, 162: 328-336. [41] Chen J, Lin W, Cheng H, et al. A smartphonebased application for scale pest detection using multipleobject detection methods [J]. Electronics, 2021, 10(4): 372. [42] Zha M, Qian W, Yi W, et al. A lightweight YOLOv4-based forestry pest detection method using coordinate attention and feature fusion [J]. Entropy, 2021, 23(12): 1587. [43] Chen C J, Huang YY, Li Y S, et al. Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying [J]. IEEE Access, 2021, 9: 21986-21997. [44] He Y, Zeng H, Fan Y, et al. Application of deep learning in integrated pest management: A realtime system for detection and diagnosis of oilseed rape pests [J]. Mobile Information Systems, 2019, 2019: 1-14. [45] 吴丽芳. 基于智慧时代的农业4.0模式及发展策略研究[J]. 农业经济, 2021(5): 9-11. [46] Shen Z, Liu J, He Y, et al. Towards outofdistribution generalization: A survey [J]. arXiv Preprint, 2021: 2108.13624. [47] Joseph K J, Khan S, Khan F S, et al. Towards open world object detection [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 5830-5840. |
[1] | Liu Na, Zhang Jianfei, Jin Hairong, Tong Wenyu, Tian Subo, , Ning Xiaofeng, . Design and experiment on Allium mongolicum Regel harveste [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 33-39. |
[2] | Hu Kai, Zhang Wenyi, Qi Bing, Ji Yao, Li Kun. Controller optimal design of asymmetric hydraulic cylinder system controlled by fourway valve [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 140-146. |
[3] | Li Zongnan, Jiang Yi, Wang Si, Li Yuanhong, Huang Ping, Wei Peng. Object detection of invasive Erigeron L. plants base on YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 200-206. |
[4] | Chen Weimei, Liu Xinwei, Wang Tiewei, Xu Wenkai, Li Juan. Recognition of pine wilt disease based on twolevel fusion deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 214-219. |
[5] | Li Ming, , Ding Zhihuan, , Zhao Jingxuan, Chen Siming, Li Wenyong, Yang Xinting. Detection method for cucumber downy mildew #br# #br# sporangia in a solar greenhouse based on improved YOLOv5s#br# [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 63-70. |
[6] | Yang Chenglei, , Lan Yubin, , Wang Qingyu, , Bie Xiaoting, , Shan Changfeng, , Wang Guobin, . Application of neural network in greenhouse microclimate prediction [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 89-99. |
[7] | Xu Yanxiang, Zhang Jingzhi, Lan Yubin, , Sun Yuemei, Han Xin, Bai Jingbo. Research progress of early crop disease identification based on infrared thermal imaging and machine learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 188-197. |
[8] | Fu Hao, , Zhao Xueguan, Zhai Changyuan, , Zheng Kang, Zheng Shenyu, Wang Xiu. Research progress on weed recognition method based on deep learning technology [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 198-207. |
[9] | Duan Yufei, , Dong Geng, Sun Jiwei, Wang Yanqing, . Sorting model of camellia fruit shells and tea seeds based on SE-ResNet network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 89-95. |
[10] | Xuan Menghui, Zhao Sixia, Xu Liyou, Chen Xiaoliang, Li Tuanfei. Assembly quality inspection method of combine harvester based on improved VMD and LSTM [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 132-140. |
[11] | Wang Xinyan, Yi Zhengyang.. Research on obstacle detection method of mowing robot working environment based on improved YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 171-176. |
[12] | Li Hao, Zhang Mengqiang, Yin Yong, Zhang Hong.. Application of fluidsolid coupling method in agricultural engineering [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 20-28. |
[13] | Xu Huiqun, Li Yang, Zhang Jianjun.. Research status on fruit characteristics of winter jujube and mechanized harvesting [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 53-59. |
[14] | Wu Junpeng, Huang Guangwen, Li Jun.. Research status and prospect of visual and spectral detection of fruit diseases [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 112-118. |
[15] | He Yushuang, Wang Zhuo, Wang Xiangping, Xiao Jin, Luo Youyi, Zhang Junfeng.. Research progress of deep learning in crop disease image recognition [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 148-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296