[1] Jiang L L, Wang S P, Meng F D, et al. Relatively stable response of fruiting stage to warming and cooling relative to other phenological events [J]. Ecology, 2016, 97(8): 1961-1969.
[2] 李婷婷, 郭增长, 马超. 中国第二、三级阶梯地形过渡带山前植被物候时空变化探析[J]. 地理研究, 2022, 41(11): 3000-3020.Li Tingting, Guo Zengzhang, Ma Chao. Spatiotemporal changes of piedmont phenology in the transitional zone between the second and third steps, China [J]. Geographical Research, 2022, 41(11): 3000-3020.
[3] 周祎鸣, 张莹, 田晓华, 等. 基于积温的文冠果开花物候期预测模型的构建[J]. 北京林业大学学报, 2019, 41(6): 62-74.
Zhou Yiming, Zhang Ying, TianXiaohua, et al. Establishment of the flowering phenological model of Xanthoceras sorbifolium based on accumulated temperature [J]. Journal of Beijing Forestry University, 2019, 41(6): 62-74.
[4] 胡园春, 安广池, 张越, 等. 基于积温的枣庄地区石榴始花期预测模型初探[J]. 山东农业大学学报, 2021, 52(4): 567-570.Hu Yuanchun, An Guangchi, Zhang Yue, et al. Preliminary study on prediction model of pomegranate flowering date in Zaozhuang city based on accumulated temperature [J]. Journal of Shandong Agricultural University, 2021, 52(4): 567-570.
[5] 栾青, 郭建平, 马雅丽, 等. 基于线性生长假设的作物积温模型稳定性比较[J]. 中国农业气象, 2020, 41(11): 695-706.
Luan Qing, Guo Jianping, Ma Yali, et al. Comparison of models stability about integrated temperature based on linear hypotheses [J]. Chinese Journal of Agrometeorology, 2020, 41(11): 695-706.
[6] 姜会飞, 郭勇, 张玉莹, 等. 不同下限基点温度对积温模型模拟效果的影响[J]. 中国农业大学学报, 2018, 23(5): 131-141.
Jiang Huifei, Guo Yong, Zhang Yuying, et al. Impact of base temperature on the growing degreeday and simulation effect of GDD model [J]. Journal of China Agricultural University, 2018, 23(5): 131-141.
[7] Wei J, Li Z, Peng Y, et al. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison [J]. Atmospheric Environment, 2019, 201: 428-440.
[8] Zhang X, Liu L, Liu Y, et al. Generation and evaluation of the VIIRS land surface phenology product [J]. Remote Sensing of Environment, 2018, 216: 212-229.
[9] 王敏钰, 罗毅, 张正阳, 等. 植被物候参数遥感提取与验证方法研究进展[J]. 遥感学报, 2022, 26(3): 431-455.
Wang Minyu, Luo Yi, Zhang Zhengyang, et al. Recent advances in remote sensing of vegetation phenology: Retrieval algorithm and validation strategy [J]. National Remote Sensing Bulletin, 2022, 26(3): 431-455.
[10] Ikasari I H, Ayumi V, Fanany M I, et al. Multiple regularizations deep learning for paddy growth stages classification from LANDSAT-8 [C]. 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS). IEEE, 2016: 512-517.
[11] 周玉科. 基于数码照片的植被物候提取多方法比较研究[J]. 地理科学进展, 2018, 37(8): 1031-1044.Zhou Yuke. Comparative study of vegetation phenology extraction methods based on digital images [J]. Progress in Geography, 2018, 37(8): 1031-1044.
[12] Le Cun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition [J]. Neural computation, 1989, 1(4): 541-551.
[13] Kamilaris A, PrenafetaBoldú F X. Deep learning in agriculture: A survey [J]. Computers and Electronics in Agriculture, 2018, 147: 70-90.
[14] Richardson A D, Hufkens K, Milliman T, et al. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery [J]. Scientific Data, 2018, 5(1): 1-24.
[15] 许增, 王志伟, 胡桃花, 等. 改进的轻量级YOLO在苹果物候期自动观测中的研究[J]. 计算机工程与设计, 2021, 42(12): 3478-3484.
Xu Zeng, Wang Zhiwei, Hu Taohua, et al. Improved lightweight YOLO in automatic observation of apple phenology [J]. Computer Engineering and Design, 2021, 42(12): 3478-3484.
[16] Wang X A, Tang J, Whitty M. DeepPhenology: Estimation of apple flower phenology distributions based on deep learning [J]. Computers and Electronics in Agriculture, 2021, 185: 106123.
[17] 张鹏程, 余勇华, 陈传武, 等. 基于改进MobileNetV2的柑橘害虫分类识别方法[J]. 华中农业大学学报, 2023(3): 161-168.
Zhang Pengcheng, Yu Yonghua, Chen Chuanwu, et al. A classification and recognition method for citrus insect pests based on improved MobileNetV2 [J]. Journal of Huazhong Agricultural University, 2023(3): 161-168.
[18] 王卓, 王健, 王枭雄, 等. 基于改进YOLO v4的自然环境苹果轻量级检测方法[J]. 农业机械学报, 2022, 53(8): 294-302.
Wang Zhuo, Wang Jian, Wang Xiaoxiong, et al. Lightweight realtime apple detection method based on improved YOLO v4 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 294-302.
[19] Ji W, Pan Y, Xu B, et al. A realtime apple targets detection method for picking robot based on Shufflenetv2-YOLOX [J]. Agriculture, 2022, 12(6): 856.
[20] 安小松, 宋竹平, 梁千月, 等. 基于CNN-Transformer的视觉缺陷柑橘分选方法[J]. 华中农业大学学报, 2022, 41(4): 158-169.
An Xiaosong, Song Zhuping, Liang Qianyue, et al. A CNN-Transformer based method for sorting citrus with visual defects [J]. Journal of Huazhong Agricultural University, 2022, 41(4): 158-169.
[21] 张善文, 黄文准, 尤著宏. 基于物联网和深度卷积神经网络的冬枣病害识别方法[J]. 浙江农业学报, 2017, 29(11): 1868-1874.
Zhang Shanwen, Huang Wenzhun, You Zhuhong. Recognition method of winter jujube diseases based on Internet of Things and deep convolutional neural network [J]. Acta Agriculturae Zhejiangensis, 2017, 29(11): 1868-1874.
[22] 孙文杰, 牟少敏, 董萌萍, 等. 基于卷积循环神经网络的桃树叶部病害图像识别[J]. 山东农业大学学报(自然科学版), 2020, 51(6): 998-1003.
Sun Wenjie, Mu Shaomin, Dong Mengping, et al. Image recognition of peach leaf diseases based on convolutional recurrent neural network [J]. Journal of Shandong Agricultural University (Natural Science Edition), 2020, 51(6): 998-1003.
[23] Zhang W, Zhou G, Chen A, et al. Deep multiscale dualchannel convolutional neural network for Internet of Things apple disease detection [J]. Computers and Electronics in Agriculture, 2022, 194: 106749.
[24] 刘凯. 基于“云—边—端”的果园信息监测平台研究[D]. 长春: 吉林大学, 2022.Liu Kai. Research on orchard information monitoring platform based on “cloudsideend” [D]. Changchun: Jilin University, 2022.
[25] 朱永宁, 周望, 杨洋, 等. 基于Faster R-CNN的枸杞开花期与果实成熟期识别技术[J]. 中国农业气象, 2020, 41(10): 668-677.
Zhu Yongning, Zhou Wang, Yang Yang, et al. Automatic identification technology of Lycium barbarum flowering period and fruit ripening period based on Faster R-CNN [J]. Chinese Journal of Agrometeorology, 2020, 41(10): 668-677.
[26] 陈果. 基于数据增强和多模态特征的茶树物候期识别模型设计[D]. 重庆: 重庆大学, 2020.Chen Guo. Design of tea plant phenology recognition model based on data augment and multimodal feature [D]. Chongqing: Chongqing University, 2020.
[27] 崔晓晖, 陈民, 陈志泊, 等. 基于注意力机制的林木物候期识别方法[J]. 中南林业科技大学学报, 2021, 41(7): 11-19.
Cui Xiaohui, Chen Min, Chen Zhibo, et al. Forest phenology recognition method based on attention mechanism [J]. Journal of Central South University of Forestry & Technology, 2021, 41(7): 11-19.
|