Journal of Chinese Agricultural Mechanization ›› 2022, Vol. 43 ›› Issue (11): 155-164.DOI: 10.13733/j.jcam.issn.2095-5553.2022.11.022
Previous Articles Next Articles
Wang Xiao, Zhang Meina, Zhou Jianfeng, Sun Chuanliang, Wu Qian, Cao Jing.
Online:
2022-11-15
Published:
2022-10-25
王潇1,张美娜1, 2,Zhou Jianfeng3,孙传亮2,吴茜2,曹静2
基金资助:
CLC Number:
Wang Xiao, Zhang Meina, Zhou Jianfeng, Sun Chuanliang, Wu Qian, Cao Jing.. A review on the application of LiDAR sensors and technologies in agricultural scenarios[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 155-164.
王潇, 张美娜, Zhou Jianfeng, 孙传亮, 吴茜, 曹静. LiDAR传感器及技术在农业场景的应用进展综述[J]. 中国农机化学报, 2022, 43(11): 155-164.
[1] Ratnaparkhi S, Khan S, Arya C, et al. Smart agriculture sensors in IOT: A review [J]. Materials Today: Proceedings, 2020. [2] Lin N, Wang X, Zhang Y, et al. Fertigation management for sustainable precision agriculture based on Internet of Things [J]. Journal of Cleaner Production, 2020, 277: 124119. [3] Cisternas I, Velásquez I, Caro A, et al. Systematic literature review of implementations of precision agriculture [J]. Computers and Electronics in Agriculture, 2020, 176: 105626. [4] Lin Y. LiDAR: An important tool for nextgeneration phenotyping technology of high potential for plant phenomics? [J]. Computers and electronics in Agriculture, 2015, 119: 61-73. [5] Karthikeyan L, Chawla I, Mishra A K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses [J]. Journal of Hydrology, 2020, 586: 124905. [6] 赵一鸣, 李艳华, 商雅楠, 等. 激光雷达的应用及发展趋势[J]. 遥测遥控, 2014, 35(5): 4-22. Zhao Yiming, Li Yanhua, Shang Yanan, et al. Application and development direction of Lidar [J]. Journal of Telemetry, Tracking and Command, 2014, 35(5): 4-22. [7] 杨兴雨, 苏金善, 王元庆, 等. 国内外激光成像雷达系统发展的研究[J]. 激光杂志, 2016, 37(1): 1-4. Yang Xingyu, Su Jinshan, Wang Yuanqing, et al. Research the development of international laser imaging radar system [J]. Laser Journal, 2016, 37(1): 1-4. [8] Hu Y, Zhao N, Qian Q. Modeling and analyzing point cloud generation in missileborne LiDAR [J]. Defence Technology, 2020, 16(1): 69-76. [9] Zhao Y, Wang X, Cai Y, et al. Measurements of atmospheric aerosol hygroscopic growth based on multichannel RamanMie lidar [J]. Atmospheric Environment, 2021, 246: 118076. [10] Pentek Q, Kennel P, Allouis T, et al. A flexible targetless LiDARGNSS/INScamera calibration method for UAV platforms [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 294-307. [11] Cui Y, Wu J, Xu H, et al. Lane change identification and prediction with roadside LiDAR data [J]. Optics & Laser Technology, 2020, 123: 105934. [12] 王俊. 基于自动驾驶的激光雷达测距技术研究[D]. 成都: 电子科技大学, 2020. Wang Jun. Research on Lidar ranging technology based on autopilot [D]. Chengdu: University of Electronic Science and Technology of China, 2020. [13] 周睿, 孔东. 一种高精度相位激光测距方法的实现[J]. 科学技术与工程, 2009, 9(21): 6337-6342, 6347. Zhou Rui, Kong Dong. Realization on a method of accurate phaseshift laser range finder [J]. Science Technology and Engineering, 2009, 9(21): 6337-6342, 6347. [14] 杨兴雨, 李晨, 郝丽婷, 等. 先进激光三维成像雷达技术的研究进展与趋势分析[J]. 激光杂志, 2019, 40(5): 1-9. Yang Xingyu, Li Chen, Hao Liting, et al. Research progress and trend analysis of advanced 3D imaging Lidar technology [J]. Laser Journal, 2019, 40(5): 1-9. [15] Li Z P, Ye J T, Huang X, et al. Singlephoton imaging over 200 km [J]. Optica, 2021, 8(3): 344-349. [16] 王滨辉, 宋沙磊, 曹雄, 等. 多光谱激光雷达波形数据处理及应用[J]. 红外与激光工程, 2020, 49(S2): 96-102. Wang Binhui, Song Shalei, Cao Xiong, et al. Processing and application of multispectral Lidar waveform data [J]. Infrared and Laser Engineering, 2020, 49(S2): 96-102. [17] 龚威, 史硕, 陈必武, 等. 对地观测高光谱激光雷达发展及展望[J]. 遥感学报, 2021, 25(1): 501-513. Gong Wei, Shi Shuo, Chen Biwu, et al. Development and prospect of hyperspectral LiDAR for earth observation [J]. National Remote Sensing Bulletin, 2021, 25(1): 501-513. [18] Olivier M D, Robert S. A method to quantify canopy changes using multitemporal terrestrial Lidar data: Tree response to surrounding gaps [J]. Agricultural and Forest Meteorology, 2017, 237: 184-195. [19] Coops N C, Tompalski P, Goodbody T R H, et al. Modelling lidarderived estimates of forest attributes over space and time: A review of approaches and future trends [J]. Remote Sensing of Environment, 2021, 260: 112477. [20] García M, Riao D, Chuvieco E, et al. Estimating biomass carbon stocks for a mediterranean forest in central Spain using LiDAR height and intensity data [J]. Remote Sensing of Environment, 2010, 114(4): 816-830. [21] Anderson C T, Dietz S L, Pokswinski S M, et al. Traditional field metrics and terrestrial LiDAR predict plant richness in southern pine forests [J]. Forest Ecology and Management, 2021, 491: 119118. [22] Sun C, Cao S, SanchezAzofeifa G A. Mapping tropical dry forest age using airborne waveform LiDAR and hyperspectral metrics [J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 83: 101908. [23] Mahoney C, Hall R J, Hopkinson C, et al. A forest attribute mapping framework: A pilot study in a Northern boreal forest, Northwest Territories, Canada [J]. Remote sensing, 2018, 10(9): 1338. [24] Simonson W D, Allen H D, Coomes D A. Remotely sensed indicators of forest conservation status: Case study from a Natura 2000 site in southern Portugal [J]. Ecological indicators, 2013, 24: 636-647. [25] Ferraz A, Saatchi S, Mallet C, et al. Lidar detection of individual tree size in tropical forests [J]. Remote Sensing of Environment, 2016, 183: 318-333. [26] 庞勇, 赵峰, 李增元, 等. 机载激光雷达平均树高提取研究[J]. 遥感学报, 2008, 12(1): 152-158. Pang Yong, Zhao Feng, Li Zengyuan, et al. Forest height inversion using airborne Lidar technology [J]. Journal of Remote Sensing, 2008, 12(1): 152-158. [27] 张海锋, 许林云. 果园喷雾机发展现状及展望[J]. 中国农机化学报, 2014, 35(3): 112-118. Zhang Haimeng, Xu Linyun. Summary of research status on orchard sprayer [J]. Journal of Chinese Agricultural Mechanization,2014, 35(3): 112-118. [28] Rosell J R, Sanz R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities [J]. Computers and electronics in agriculture, 2012, 81: 124-141. [29] 邱白晶, 闫润, 马靖, 等. 变量喷雾技术研究进展分析[J]. 农业机械学报, 2015, 46(3): 59-72. Qiu Baijing, Yan Run, Ma Jing, et al. Research progress analysis of variable rate sprayer technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 59-72. [30] Arnó J, Vallès J M, Llorens J, et al. Leaf area index estimation in vineyards using a groundbased LiDAR scanner [J]. Precision agriculture, 2013, 14(3): 290-306. [31] Mahmud M S, Zahid A, He L, et al. Development of a LiDAR-guided sectionbased tree canopy density measurement system for precision spray applications [J]. Computers and Electronics in Agriculture, 2021, 182: 106053. [32] Zeng L, Feng J, He L. Semantic segmentation of sparse 3D point cloud based on geometrical features for trellisstructured apple orchard [J]. Biosystems Engineering, 2020, 196: 46-55. [33] 张美娜, 吕晓兰, 邱威, 等. 基于三维激光点云的靶标叶面积密度计算方法[J]. 农业机械学报, 2017, 48 (11): 172-178. Zhang Meina, Lü Xiaolan, Qiu Wei, et al. Calculation method of leaf area density based on threedimensional laser point cloud [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 172-178. [34] 苏伟, 展珺鸽, 张明政, 等. 基于机载LiDAR数据的农作物叶面积指数估算方法研究[J]. 农业机械学报, 2016, 47(3): 272-277. Su Wei, Zhan Junge, Zhang Mingzheng, et al. Estimation method of crop leaf area index based on airborne LiDAR data [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 272-277. [35] 程曼, 袁洪波, 蔡振江, 等. 田间作物高通量表型信息获取与分析技术研究进展[J]. 农业机械学报, 2020, 51(S1): 314-324. Cheng Man, Yuan Hongbo, Cao Zhenjiang, et al. Review of fieldbased information acquisition and analysis of highthroughput phenotyping [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 314-324. [36] Greaves H E, Vierling L A, Eitel J U H, et al. Estimating aboveground biomass and leaf area of lowstature Arctic shrubs with terrestrial LiDAR [J]. Remote Sensing of Environment, 2015, 164: 26-35. [37] Saeys W, Lenaerts B, Craessaerts G, et al. Estimation of the crop density of small grains using LiDAR sensors [J]. Biosystems Engineering, 2009, 102(1): 22-30. [38] JimenezBerni J A, Deery D M, RozasLarraondo P, et al. High throughput determination of plant height, ground cover, and aboveground biomass in wheat with LiDAR [J]. Frontiers in Plant Science, 2018, 9: 1-18. [39] 程曼, 蔡振江, Ning Wang, 等. 基于地面激光雷达的田间花生冠层高度测量系统研制[J]. 农业工程学报, 2019, 35(1): 180-187. Cheng Man, Cai Zhenjiang, Ning Wang,et al. System design for peanut canopy height information acquisition based on LiDAR [J]. Transactions of the CSAE, 2019, 35(1): 180-187. [40] Wang H, Lin Y, Wang Z, et al. Validation of a lowcost 2D laser scanner in development of a moreaffordable mobile terrestrial proximal sensing system for 3D plant structure phenotyping in indoor environment [J]. Computers and Electronics in Agriculture, 2017, 140: 180-189. [41] 郭庆华, 吴芳芳, 庞树鑫, 等. Crop 3D—基于激光雷达技术的作物高通量三维表型测量平台[J]. 中国科学:生命科学, 2016, 46(10): 1210-1221. Guo Qinghua, Wu Fangfang, Pang Shuxin, et al. Crop 3D: A platform based on LiDAR for 3D highthroughput crop phenotyping [J]. Science China Press, 2016, 46(10): 1210-1221. [42] Lin Y C, Habib A. Quality control and crop characterization framework for multitemporal UAV LiDAR data over mechanized agricultural fields [J]. Remote Sensing of Environment, 2021, 256: 112299. [43] 王庆, 车荧璞, 柴宏红, 等. 基于无人机可见光与激光雷达的甜菜株高定量评估[J]. 农业机械学报, 2021, 52(3): 178-184. Wang Qing, Che Yingpu, Chai Honghong, et al. Quantitative evaluation of sugar beet plant height based on UAV-RGB and UAV-LiDAR [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3):178-184. [44] Blok P M, van Boheemen K, van Evert F K, et al. Robot navigation in orchards with localization based on Particle filter and Kalman filter [J]. Computers and Electronics in Agriculture, 2019, 157: 261-269. [45] 张漫, 季宇寒, 李世超, 等. 农业机械导航技术研究进展[J]. 农业机械学报, 2020, 51(4): 1-18. Zhang Man, Ji Yuhan, Li Shichao, et al. Research progress of agricultural machinery navigation technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 1-18. [46] Underwood J P, Jagbrant G, Nieto J I, et al. Lidarbased tree recognition and platform localization in orchards [J]. Journal of Field Robotics, 2015, 32(8): 1056-1074. [47] 李秋洁, 丁旭东, 邓贤. 基于激光雷达的果园行间路径提取与导航[J]. 农业机械学报, 2020, 51(S2): 344-350. Li Qiujie, Ding Xudong, Deng Xian. Intrarow path extraction and navigation for orchards based on LiDAR [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 344- 350. [48] 刘伟洪, 何雄奎, 刘亚佳, 等. 果园行间3D LiDAR导航方法[J]. 农业工程学报, 2021, 37(9): 165-174. Liu Weihong, He Xiongkui, Liu Yajia, et al. Navigation method between rows for orchard based on 3D LiDAR [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 165-174. [49] 刘星星, 张超, 张浩, 等. 最小二乘法与SVM组合的林果行间自主导航方法[J]. 农业工程学报, 2021, 37(9): 157-164. Liu Xingxing, Zhang Chao, Zhang Hao, et al. Interrow automatic navigation method by combining least square and SVM in forestry [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 157-164. [50] 侯加林, 蒲文洋, 李天华, 等. 双激光雷达温室运输机器人导航系统研制[J]. 农业工程学报, 2020, 36(14): 80-88. Hou Jialin, Pu Wenyang, Li Tianhua, et al. Development of duallidar navigation system for greenhouse transportation robot [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 80-88. [51] 季宇寒, 李寒, 张漫, 等. 基于激光雷达的巡检机器人导航系统研究[J]. 农业机械学报, 2017, 49(2):14-21. Ji Yuhan, Li Han, Zhang Man, et al. Navigation system for inspection robot based on LiDAR [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 49(2): 14-21. [52] Berg F V D, Kubiak K, Benjey W G. Emission of pesticides into the air [J]. Water Air & Soil Pollution, 1999(115): 195-218. [53] Gregorio E, RosellPolo J R, Sanz R, et al. LIDAR as an alternative to passive collectors to measure pesticide spray drift [J]. Atmospheric environment, 2014, 82: 83-93. [54] 张慧春, 郑加强, 周宏平, 等. 农药喷施过程中雾滴沉积分布与脱靶飘移研究[J]. 农业机械学报, 2017, 48(8): 114-122. Zhang Huichun, Zheng Jiaqiang, Zhou Hongping, et al. Droplet deposition distribution and offtarget drift during pesticide spraying operation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 114-122. [55] 王国宾, 李烜, John Andaloro, 等. 田间农药雾滴精准采样技术与发展趋势[J]. 农业工程学报, 2021, 37(11): 1-12. Wang Guobin, Li Xuan, John Andaloro, et al. Current status and prospects of precise sampling of pesticide droplets [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11): 1-12. [56] Hoff R M, Mickle R E, Froude F A. A rapid acquisition lidar system for aerial spray diagnostics [J]. Transactions of the ASAE, 1989, 32(5): 1523-1528. [57] Gregorio E, Rocadenbosch F, Sanz R, et al. Eyesafe lidar system for pesticide spray drift measurement [J]. Sensors, 2015, 15(2): 3650-3670. [58] Gregorio E, Torrent X, Planas de Martí S, et al. Measurement of spray drift with a specifically designed lidar system [J]. Sensors, 2016, 16(4): 499. [59] Gregorio E, Torrent X, Planas S, et al. Assessment of spray drift potential reduction for hollowcone nozzles: Part 2. LiDAR technique [J]. Science of the Total Environment, 2019, 687: 967-977. [60] Torrent X, Gregorio E, RosellPolo J R, et al. Determination of spray drift and buffer zones in 3D crops using the ISO standard and new LiDAR methodologies [J]. Science of the Total Environment, 2020, 714: 136666. [61] Gil E, Llorens J, Llop J, et al. Use of a terrestrial LIDAR sensor for drift detection in vineyard spraying [J]. Sensors, 2013, 13(1): 516-534. |
[1] | Jiang Lai, Wang Wendi, , , Huo Xiaojing, , , Wang Hui, , , Tang Juan, , , Li Lihua, , . Design and experiment of dead chicken recognition robot system [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 81-87. |
[2] | . Detection method and validation analysis based on the improved YOLOX-s apple blossom growth state [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 162-167. |
[3] | Gao Fangzheng, Tang Wenjun, Chen Guangming, , Huang Jiacai. Fast recognition of ripe tomato fruits in complex environment based on improved YOLOv3 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 174-183. |
[4] | Li Hang, Liao Yinghua, Huang Bo. Research on path planning of tea picking manipulator based on improved DQN [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 198-205. |
[5] | Shao Yifan, , Mei Song, Shi Zhigang, Song Zhiyu, Tong Yifei. Research on path planning technology of agricultural robot based on improved artificial potential field method [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 206-213. |
[6] | Lang Xiudan, Shi Yuliang, Huang Xinping, Li Tianhua, Wang Dongwei, Chen Mingdong. Design of integral vinefalling device for solar greenhouse [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 78-84. |
[7] | Ruan Chengzhi, Lin Genshen, Chen Xu, Sun Yueping, Yang Jun, Zhao Dean. Navigation line fitting method of crab pond aquatic plant image based on image processing [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 147-153. |
[8] | Liu Wenwen, Sun Yujing, Jiang Shuhui, Jiang Peng. Study on pedestrian detection methods under occlusion [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 179-186. |
[9] | Li Zongnan, Jiang Yi, Wang Si, Li Yuanhong, Huang Ping, Wei Peng. Object detection of invasive Erigeron L. plants base on YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 200-206. |
[10] | Yang Xin, Liu Yaoxi, Wei Jinyu, Zhang Xiaolin. Research on supply chain governance model of agricultural products in Tianjin with blockchain embedding [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(6): 224-229. |
[11] | Wang Peng, Jin Chengqian, , Wang Chao, Li Panpan, Zhao Zihao. Research status of threshing system of grain combine harvester [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 48-57. |
[12] | Zhou Xianqin, Han Zhenyu, Liu Chengyuan. Silkworm cocoon identification method based on improved convolution neural network and image processing [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 100-106. |
[13] | Sun Fengchen, Cai Hongzhen, , Qi Zhiqiang, Gao Feng, Liu Yufeng, Liu Deying. Design and experiment of negative pressure steam heating system based on liquidair jet [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 104-112. |
[14] | Wang Haichen, , , Wu Huarui, , Zhu Huaji, , Miao Yisheng, , Yang Baozhu, . Path optimization of unmanned agricultural machinery in vegetable field based on improved ant colony algorithm [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 187-194. |
[15] | Liu Zhen, Sun Yuan, Jiao Shuaifeng, Cheng Yuanlei, Chen Yunping. Design and application of LAI automatic network measurement system based on hemispherical photography [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 123-131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296