Journal of Chinese Agricultural Mechanization ›› 2021, Vol. 42 ›› Issue (8): 214-221.DOI: 10.13733/j.jcam.issn.2095-5553.2021.08.29
Previous Articles Next Articles
Wang Lianji, Liao Jinyang, Hu Hong, Liu Lu, Bai Xin, Chen Chunlin.
Online:
2021-08-15
Published:
2021-08-15
基金资助:
CLC Number:
Wang Lianji, Liao Jinyang, Hu Hong, Liu Lu, Bai Xin, Chen Chunlin.. Research status and prospect of adhesion reduction and desorption technology for agricultural machinery parts touching soil [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 214-221.
王莲冀, 廖劲杨, 胡红, 刘露, 白鑫, 陈春霖, . 农机触土部件减粘脱附技术研究现状与展望[J]. 中国农机化学报, 2021, 42(8): 214-221.
[1] L.D.贝佛尔. 土壤物理学[M]. 南京: 土壤物理科学出版社, 1965. [2] 钱定华. 传统犁壁材料——白口铁对重粘土粘附特性的研究[J]. 农业机械学报, 1965, 8(2): 145-150. [3] 丁启朔, 丁为民. 现代土壤机械耕作研究的综述[J]. 土壤通报, 2006, 37(1): 149-153. [4] 曾德超. 机械土壤动力学[M]. 北京: 北京科技技术出版社, 1995. [5] 秋山丰, 横井肇. 土壤粘着性研究(第2报)[J]. 日本土壤肥科学杂志, 1972, 43(8): 271-277. [6] 秋山丰, 横井肇. 土壤粘着性研究(第3报)[J]. 日本土壤肥科学杂志, 1972, 43(9): 315-320. [7] 张际先, 桑正中, 高良润. 土壤对固体材料粘附和摩擦性能的研究[J]. 农业机械学报, 1986, 17(1): 32-40. [8] 钱定华, 张际先. 土壤对固体材料粘附和摩擦研究状况概述[J]. 农业机械学报, 1984, 15(1): 69-78. [9] 丛茜, 任露泉, 陈秉聪, 等. 土壤粘附规律的化学吸附分析[J].农业工程学报, 1996, 12(3): 16-20. [10] 张际先. 土壤对固体材料粘附和摩擦的研究[D]. 镇江: 江苏工学院, 1985. [11] 郑侃. 耕整机械土壤减粘脱附技术研究现状与展望[J]. 安徽农业大学学报, 2019, 46(4): 728-736. [12] 李庆达, 郭建永, 胡军, 等. 土壤耕作部件耐磨减阻处理的研究现状[J]. 表面技术, 2017, 46(2): 119-126. [13] Gill W R, Berg G E. Soil dynamics in tillage and traction [J].Soil Science of America, 1968, 32(3): 4. [14] 李斌, 刘洋, 牛国梁, 等. 秸秆粉碎还田机及关键部件的研究动态分析[J]. 新疆农机化, 2020(5): 10-13. [15] 于昭洋, 胡志超, 胡继红, 等. 大蒜收获机械研发现状及作业质量影响因素[J]. 中国农机化, 2012, 33(5): 68-71. Yu Zhaoyang, Hu Zhichao, Hu Jihong, et al. Research status and effect cause of garlic harvester [J]. Journal of Chinese Agricultural Mechanization, 2012, 33(5): 68-71. [16] 孙一源, 高行方, 余登苑. 农业土壤力学[M]. 北京: 中国农业出版社, 1985. [17] 任露泉, 陈德兴, 胡建国. 土壤动物减粘脱土规律初步分析[J]. 农业工程学报, 1990(6): 15-20. [18] 孙久荣, 程红, 丛茜, 等. 蜣螂减粘脱附的仿生学研究[J]. 生物物理学学报, 2001, 17(4): 785-793. Sun Jiurong, Cheng Hong, Cong Qian, et al. Bionic study on the beetle Copris ochus Motschulsky for reduction of soil adhesion [J]. Acta Biophysica Sinica, 2001, 17(4): 785-793. [19] 王立新, 高雅研. 农业机械领域的工程仿生研究概况与应用前景[J]. 河北科技大学学报, 2014, 35(4): 310-317. [20] 王春华, 王琛. 仿蜣螂虫凹坑形镐形截齿的设计与研究[J]. 机械强度, 2020, 42(2): 325-330. [21] Soni P, Salokhe V M, Nakashima H. Modification of a mouldboard plough surface using arrays of polyethylene protuberances [J]. Journal of Terramechanics, 2007, 44(6): 411-422. [22] Wang Y, Xue W, Ma Y, et al. DEM and soil bin study on a biomimetic disc furrow opener [J]. Computers and Electronics in Agriculture, 2019, 156: 209-216. [23] 任露泉, 佟金, 李建桥, 等. 生物脱附与机械仿生——多学科交叉新技术领域[J]. 中国机械工程, 1999, 10(9): 984-986. [24] 贾洪雷, 王文君, 庄健, 等. 仿形弹性镇压辊减粘防滑结构设计与试验[J]. 农业机械学报, 2015, 46(6): 20-27. Jia Honglei, Wang Wenjun, Zhuang Jian, et al. Design and experiment on reducing soil adhesion and antislip structure of profiling elastic press roller [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 20-27. [25] 邱兆美, 张海峰, 张伏, 等. 基于蚯蚓体表特征的仿生深松铲设计及分析[J]. 江苏农业科学, 2018, 46(4): 210-212. [26] Zhang D G, Chen Y X, Ma Y H, et al. Earthworm epidermal mucus: Rheological behavior reveals dragreducing characteristics in soil [J]. Soil & Tillage Research, 2016, 158: 57-66. [27] 望红浩. 仿生触土曲面变曲率规律的统计学研究及其力学特性分析[D]. 洛阳: 河南科技大学, 2017. Wang Honghao. Statistical analysis and mechanical properties analysis of variable curvature of bionic soil surface [D]. Luoyang: Henan University of Science and Technology, 2017. [28] 马云海, 裴高院, 王虎彪, 等. 挖掘机獾爪趾仿生斗齿提高其入土性能仿真与试验[J]. 农业工程学报, 2016, 32(18): 67-72. Ma Yunhai, Pei Gaoyuan, Wang Hubiao, et al. Simulation and experiment of badger claw toe bionic excavator bucket tooth for improving performance of digging and cutting [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(18): 67-72. [29] Han Z W, Tong J, Li J Q, et al. Biomimetic multifunctional surfaces using arrays of polyethylene protuberances [J]. Terramechanics, 2007, 44(6): 411-422. [30] 贾贤, 任露泉, 陈秉聪, 等. 土壤动物体表及仿生复合涂层的润湿性[J]. 材料研究学报, 1996, 10(5): 556-560. [31] 徐德生, 任露泉, 邱小明, 等. WC/Cu基仿生非光滑耐磨复合涂层的研究[J]. 农业机械学报, 2004, 35(6): 148-151. Xu Desheng, Ren Luquan, Qiu Xiaoming, et al. Study on WC/Cu based bionic, nonsmoothed, and composite coating [J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35(6): 148-151. [32] Salokhe V M, Chuenpakaranant W, Niyampa T. Effect of enamel coating on the performance of a tractor drawn rotavator [J]. Journal of Terramechanics, 1999, 36(3): 127-138. [33] Marani S M, Shahgholi G, Moinfar A. Effect of nano coating materials on reduction of soil adhesion and external friction [J]. Soil and Tillage Research, 2019, 193: 42-49. [34] Barzegar M, Hashemi S J, Nazokdast H, et al. Evaluating the draft force and soiltool adhesion of a UHMWPE coated furrower [J]. Soil & Tillage Research, 2016, 163: 160-167. [35] 肖宇豪, 刘成, 黄琳, 等. 电渗法降低黏性土黏附力室内试验[J]. 林业工程学报, 2020, 5(4): 168-173. Xiao Yuhao, Liu Cheng, Huang Lin, et al. Laboratory tests on adhesion reduction of clay soil by electroosmosis method [J]. China Forestry Science and Technology, 2020, 5(4): 168-173. [36] 陈秉聪, 刘大维, 宁素俭, 等. 非光滑表面电渗轮脚减粘脱土的试验研究[J]. 农业工程学报, 1995, 11(3): 29-33. [37] Ren L, Qian C, Jin T, et al. Reducing adhesion of soil against loading shovel using bionic electroosmosis method [J]. Journal of Terramechanics, 2001, 38(4): 211-219. [38] Dai Q W, Shao J Q, Wei H, et al. Nonsticky and freeforward performances of grubs against soil [J]. Colloids and Surfaces B: Biointerfaces, 2020, 191: 111006. [39] 倪利伟. 推土板触土曲面内在几何与力学特性研究[D]. 洛阳: 河南科技大学, 2015. Ni Liwei. Study on the geometry mechanical properties of bulldozing plate soil engaging surface [D]. Luoyang: Henan University of Science and Technology, 2015. [40] Sun Jiyu, Wang Yueming, Ma Yunhai, et al. DEM simulation of bionic subsoilers (tillage depth >40 cm) with drag reduction and lower soil disturbance characteristics [J]. Advances in Engineering Software, 2018, 119: 30-37. [41] 王福杰, 黄海东, 舒彩霞, 等. 1GLF-1.8型绿肥翻青机的设计[J]. 华中农业大学学报, 2011, 30(3): 371-374. Wang Fujie, Huang Haidong, Shu Caixia, et al. Development of 1GLF-1.8 type green manure embedding machine [J]. Journal of Huazhong Agricultural University, 2011, 30(3): 371-374. [42] 刘宏俊, 赵淑红, 谭贺文, 等. 基于刮削与振动原理的减粘降阻镇压装置研究[J]. 农业机械学报, 2018, 49(1): 86-92. Liu Hongjun, Zhao Shuhong, Tan Hewen, et al. Investigation on press device in reducing adhesion and resistance based on scrape and vibration principle [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 86-92. [43] Wang X L, Ito N, Kito K, et al. Study on use of vibration to reduce soil adhesion [J]. Journal of Terramechanics, 1998, 3: 87-101. [44] 孙亚朋, 董向前, 宋建龙, 等. 振动深松试验台作业参数减阻减振优化[J]. 农业工程学报, 2016, 32(24): 43-49. Sun Yapeng, Dong Xiangqian, Song Jianlong, et al. Parameter optimization of vibration subsoiler test bed for reducing resistance and vibration [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 43-49. [45] 张军昌, 闫小丽, 林泽坤, 等. 自激式振动深松整地机设计与试验[J]. 农业机械学报, 2016, 47(9): 44-49. Zhang Junchang, Yan Xiaoli, Lin Zekun, et al. Design and experiment of selfexciting vibration deeploosening and subsoiling machine [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 44-49. [46] Shahgoli G, Fielke J, Desbiolles J, et al. Optimising oscillation frequency in oscillatory tillage [J]. Soil and Tillage Research, 2010, 106(2): 202-210. [47] 程超, 付君, 唐心龙, 等. 水稻收获机械抖动板加热脱附试验研究[J]. 农业机械学报, 2019, 50(6): 110-118. Cheng Chao, Fu Jun, Tang Xinlong, et al. Heating antiadhesion experiments of jitter plate of rice harvesting machinery [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6): 110-118. [48] Kokoshin S, Sozonov S, Shestopalov I. Theoretical justification of reducing soil adhesion to the surfaces of the excavator working body at creation underground infrastructure [J]. Procedia Engineering, 2016, 165: 829-838. |
[1] | Lei Xuemei, Zhang Guangqiang, Yao Qi, Liu Weiwei, Qiu Shuai. . Research on automatic recognition of agricultural machine image based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 140-147. |
[2] | Wang Yangguang, Ye Zongzhao, Sun Yitian, Wang Bo.. Research on factors influencing adoption behavior of advanced technology for agricultural machinery [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 204-210. |
[3] | Gu Jiabing, Dou Xianglin, Yu Hongfeng, Meng Weiguo, He Ruiyin.. Design of training program for ChinaAfrica agricultural machinery application technology [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 218-221. |
[4] | Luo Bing, Zhang Jianmin.. Sensitivity analysis of agricultural machinery safety evaluation based on BP neural network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(3): 120-126. |
[5] | Du Pu, Zhang Mengyu, Jin Minqi, Li Ran.. tudy on willingness of rural supply and demand entities to support popularization and application of smart agricultural machinery:Case study of Hebei Province [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(3): 196-204. |
[6] | He Wanli, Duan Luojia. . Research on the performance of agricultural machinery purchase subsidy policy in Ningxia: Based on panel data of 22 counties (cities, districts) from 2015 to 2019 [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2): 171-181. |
[7] | Gao Guangming, Dong Xiao, Hu Jinliang, Si Aili, Jiang Bo, Wang Wei. . Analysis on agromachinery actuality about a typical village in mountainoushilly area: Taking Zibo City as an example [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2): 214-220. |
[8] | Chen Panyang, Qin Weicai, Wang Baokun. . Research progress on pesticide application technology of plant protection UAV [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(1): 67-79. |
[9] | Wen Xin, Wang Xi.. Research on OneNet remote monitoring system based on CAN bus of agricultural machinery [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(1): 116-121. |
[10] | Wu Xin, Qi Bin, Sun Xiaoming, Li Zhihe, Wang Xianliang, Wang Fei.. Analysis of influencing factors of agricultural machinery accidents based on fuzzy fault tree [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(1): 211-218. |
[11] | Zhu Chengke, Li Fengxia, Zhang Jia. . Design and test of sawtooth rolling type residual film recovery machine [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 25-30. |
[12] | Sun Daohe, Yang Xin, Wei Jinyu. . Research on the multilateral matching of agricultural machinery supply chain based on industrial Internet [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 130-135. |
[13] | Shi Zhigang, Mei Song, Shao Yifan, Wan Ru, Song Zhiyu, Xie Minglu, Li Yan.. Research status and prospect of path planning for mobile robots based on artificial potential field method [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(12): 182-188. |
[14] | Chai Shanpeng, Yao Lijian, Xu Lijun, Chen Qinhan, Xu Taotao, Yang Yankun. Research on greenhouse agricultural machinery path tracking based on dynamic look ahead distance pure pursuit model [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 58-64. |
[15] | Xu Xueming. Thoughts on crisis communication of agricultural machinery enterprises under mobile Internet environment [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 180-185. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 441
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 500
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296