[ 1 ] 马志宁, 俞鸿千, 王颖, 等. 宁夏草原蝗虫多样性及其对环境因子的响应[J]. 中国生物防治学报, 2022, 38(6): 1459-1472.
Ma Zhining, Yu Hongqian, Wang Ying, et al. Diversity of grassland grasshoppers and responses to environmental factors in Ningxia [J]. Chinese Journal of Biological Control, 2022, 38(6): 1459 -1472.
[ 2 ] 王广君, 李贝贝, 田野. 主要蝗虫生态治理策略在我国的实践应用[J]. 植物保护学报, 2021, 48(1): 84-89.
[ 3 ] 黄文江, 董莹莹, 赵龙龙, 等. 蝗虫遥感监测预警研究现状与展望[J]. 遥感学报, 2020, 24(10): 1270-1279.
[ 4 ] Kasinathan T, Uyyala S R. Machine learning ensemble with image processing for pest identification and classification in field crops [J]. Neural Computing & Applications, 2021, 33: 7491-7504.
[ 5 ] Lima M C F, Leandor M E D D A, Valero C, et al. Automatic detection and monitoring of insect pests-A review [J]. Agriculture, 2020, 10(5): 161.
[ 6 ] Lu S H, Ye S J. Using an image segmentation and support vector machine method for identifying two locust species and instars [J]. Journal of Integrative Agriculture, 2020, 19(5): 1301-1313.
[ 7 ] Ye S J, Lu S H, Bai X S. ResNet-Locust-BN network‑based automatic identification of east asian migratory locust species and instars from RGB images [J]. Insects, 2020, 11(8): 458.
[ 8 ] Liu L M, Liu M, Meng K X, et al. Camouflaged locust segmentation based on PraNet [J]. Computers and Electronics in Agriculture, 2022, 198: 107061.
[ 9 ] Cao X, Wei Z Y, Gao Y J, et al. Recognition of common insect in field based on deep learning [J]. Journal of Physics: Conference Series, 2020, 1634: 012034.
[10] 武英洁, 房世波, Piotr Chudzik, 等. 基于 Faster R-CNN 的野外环境中蝗虫快速识别[J]. 气象与环境学报, 2020, 36(6): 137-143.
[11] 李林, 柏召, 刁磊, 等. 基于 K-SSD-F的东亚飞蝗视频检测与计数方法[J]. 农业机械学报, 2021, 52(S1): 261-267.
Li Lin, Bai Zhao, Diao Lei, et al. Video detection and counting method of east Asian migratory locusts based on K-SSD-F [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 261-267.
[12] 马宏兴, 张淼, 董凯兵, 等. 基于改进YOLO v5的宁夏草原蝗虫识别模型研究[J]. 农业机械学报, 2022, 53(11): 270-279.
Ma Hongxing, Zhang Miao, Dong Kaibing, et al. Research of locust recognition in Ningxia grassland based on improved YOLOv5 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(11): 270-279.
[13] Li Y H, Yao T, Pan Y W, et al. Contextual transformer networks for visual recognition [J]. arXiv preprint arXiv: 2107. 12292, 2021.
[14] Liu Y C, Shao Z, Hoffmann N. Global attention mechanism: Retain information to enhance channel‑spatial interactions [J]. arXiv preprint arXiv: 2112. 05561, 2021.
[15] 朱猛蒙, 黄文广, 张蓉, 等. 宁夏草原蝗虫适生区和分布区划分[J]. 植物保护学报, 2021, 48(1): 237-238.
[16] Liu Z, Lin Y T, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[17] Girshick R. Fast R-CNN [J]. arXiv preprint arXiv: 1804. 02767, 2018.
[18] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. arXiv preprint arXiv: 1504. 08083, 2015.
[19] Bochkovskiy A, Wang C Y, Liao H Y M. YOLO v4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv: 1504. 08083, 2015.
[20] 马宏兴, 董凯兵, 王英菲, 等. 基于改进YOLOv5s的轻量化植物识别模型研究[J]. 农业机械学报, 2023, 54(8): 267-276.
Ma Hongxing, Dong Kaibing, Wang Yingfei, et al. Research on lightweight plant recognition model based on improved YOLOv5s [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 267-276.
[21] 罗小权, 潘善亮. 改进YOLOV3的火灾检测方法[J]. 计算机工程与应用, 2020, 56(17): 187-196.
Luo Xiaoquan, Pan Shanliang. Improved YOLOV3 fire detection method [J]. Computer Engineering and Applications, 2020, 56(17): 187-196.
[22] 高菊玲. 基于多视图特征融合的植物病害识别算法[J]. 中国农机化学报, 2020, 41(12): 147-152.
Gao Juling. Recognition algorithm of plant disease based on multi‑view feature fusion [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(12): 147-152.
|