English

Journal of Chinese Agricultural Mechanization

Journal of Chinese Agricultural Mechanization ›› 2025, Vol. 46 ›› Issue (4): 17-21.DOI: 10.13733/j.jcam.issn.2095-5553.2025.04.003

• Agriculture Mechanization and Equipment Engineering • Previous Articles     Next Articles

Kinematic simulation analysis of rotating tree branch gathering mechanism with spatial angle variation#br#

Yang Aiqian1, Li Hui1, Huang Mingsen2, Wang Zhanhai1, Yang Xin3   

  1. (1. Hengshui University, Hengshui, 053000, China; 2. Changzhou Vocational Institute of Mechatronic Technology, 
    Changzhou, 213164, China; 3. Hebei Agricultural University, Baoding, 071000, China)
  • Online:2025-04-15 Published:2025-04-17

空间角度变化的旋转式树枝聚拢机构运动学仿真分析

杨爱茜1,李辉1,黄铭森2,王占海1,杨欣3   

  1. (1. 衡水学院,河北衡水,053000; 2. 常州机电职业技术学院,江苏常州,213164; 
    3. 河北农业大学,河北保定,071000)
  • 基金资助:
    国家现代农业产业技术体系资金资助(CARS—27);衡水学院校级科研项目(2022GC09)

Abstract: To solve the problem of low efficiency in processing the large number of tree branches generated after orchard pruning, a kind of mechanism was developed that can gather scattered tree branches to the center zone of orchard rows to meet the requirements of mechanization. Based on the physical characteristics of tree branches, a gathering mechanism was designed that can achieve changes in the angle of the spring teeth. Analyzed the mechanism of gathering trajectory formation and established a mathematical model. The movement of the gathering trajectory was simulated by writing computer programs. Reverse calculated the spatial position and the shape of the cam by changing the spatial angle of the spring teeth. The main factors that affect the trajectory of motion include the crank length LGH, slide depth LHJ, connecting rod length LGK,the length of the KM segment of the elastic tooth LKM, the length of the MN segment of the elastic tooth LMN and bending angle ∠MKN involved in the model, as well as the relationship between rotation angle α1 and swing angle β1 in each stage of convergence. The result obtained a set of non‑inferior solution parameters: LGH=80 mm, LHJ=30 mm, LGK=300 mm, LKM=100 mm, LMN=650 mm, ∠MKN=35°. The relationship between α1 and β1 was as follows: α1=(0°, 90°], β1=-45°→45° in the spring tooth lifting stage; α1=(90°, 180°], β1=45°→-45° in the decline stage; α1=(180°, 360°], β1=-45° in the effective homework stage.

Key words: branch, angle of the spring teeth, gathering institutions, kinematics, simulation test, man?machine interaction

摘要: 为解决果树修剪后处理树枝效率低的问题,研发一套能够将散落的树枝聚拢到行间中心位置的机构。考虑到树枝的物理特性,设计一种能够实现弹齿角度变化的聚拢机构。阐述聚拢轨迹形成机理并对其进行运动学分析,建立数学模型;编写计算机程序对聚拢轨迹进行仿真运动;通过弹齿空间角度变化反求出滑道空间位置与形状。影响运动轨迹的主要影响因素包括曲柄长度LGH、滑道深度LHJ、连杆长度LGK、弹齿KM段长度LKM、弹齿MN段长度LMN、弯曲角∠MKN、聚拢各个阶段中旋转角度α1与摆动角度β1之间的关系等。以人机对话方式对影响因素进行单因素优化分析,获得一组非劣解组合:LGH=80 mm、LHJ=30 mm、LGK=300 mm、LKM=100 mm、LMN=650 mm、∠MKN=35°。α1与β1之间的关系:弹齿抬升阶段的α1为(0°,90°]、β1为-45°→45°;下降阶段的α1为(90°,180°]、β1为45°→-45°;有效作业阶段的α1为(180°,360°]、β1为-45°。

关键词: 树枝, 弹齿角度, 聚拢机构, 运动学, 仿真试验, 人机互动

CLC Number: