[1] 刘波, 刘筱, 韩宇捷, 等. 规模化养猪场典型沼气工程各排放节点氨排放特征研究[J]. 农业工程学报, 2018, 34(23): 179-185.
Liu Bo, Liu Xiao, Han Yujie, et al. Study on emission characteristics of ammonia from anaerobic digesters in industrial pig farm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 179-185.
[2] 黄志滔, 曹永峰, 夏晶晶, 等. 后备母猪舍夏季环境调控影响因子变化规律试验与分析[J]. 中国农机化学报, 2021, 42(11): 50-57.
Huang Zhitao, Cao Yongfeng, Xia Jingjing,et al. Experiment and analysis on the change law of environmental control factors in summer in reserve pigsty [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 50-57.
[3] 韩建军, 南少伟, 李建平, 等. 基于随机森林算法的粮堆机械通风温度预测及控制研究[J]. 河南工业大学学报(自然科学版), 2019, 40(5): 107-113.
Han Jianjun, Nan Shaowei, Li Jianping, et al. Research on prediction and control of mechanical ventilation temperature of grain pile based on random forest algorithm [J]. Journal of Henan University of Technology (Natural Science Edition), 2019, 40(5): 107-113.
[4] 黄凯, 唐倩, 沈丹, 等. 冬季猪舍内温湿度与有害气体分布规律研究[J]. 畜牧与兽医, 2019, 51(7): 35-41.Huang Kai, Tang Qian, Shen Dan,et al. Study on the distribution law of temperature, humidity and harmful gas in winter pig house [J]. Animal Husbandry & Veterinary Medicine, 2019, 51(7): 35-41.
[5] Bedi J, Toshniwal D. Empirical mode decomposition based deep learning for electricity demand forecasting [J]. IEEE Access, 2018, 6: 49144-49156.
[6] Rong L, Aarnink A J A. Development of ammonia mass transfer coefficient models for the atmosphere above two types of the slatted floors in a pig house using computational fluid dynamics [J]. Biosystems Engineering, 2019, 183: 13-25.
[7] Xie Q, Ni J Q, Bao J, et al. A thermal environmental model for indoor air temperature prediction and energy consumption in pig building [J]. Building and Environment, 2019, 161: 106238.
[8] Xie Q, Ni J, Su Z. A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system [J]. Journal of Hazardous Materials, 2017, 325: 301-309.
[9] 杨柳. 基于多尺度信息融合的猪舍环境控制系统设计[D]. 西安: 陕西科技大学, 2019.
[10] 谢秋菊, 郑萍, 包军, 等. 基于深度学习的密闭式猪舍内温湿度预测模型[J]. 农业机械学报, 2020, 51(10): 353-361.
Xie Qiuju, Zheng Ping, Bao Jun,et al. Thermal environment prediction and validation based on deep learning algorithm in closed pig house [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 353-361.
[11] 曾志雄, 余乔东, 易子骐, 等. 基于WSN的集中通风式分娩猪舍环境参数时空分布特性[J]. 农业工程学报, 2020, 36(12): 204-211.
Zeng Zhixiong, Yu Qiaodong, Yi Ziqi, et al. Spatiotemporal distribution characteristics of environmental parameters of centralized ventilation delivery sows based on WSN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 204-211.
[12] Seo I H, Lee I B, Moon O K, et al. Modelling of internal environmental conditions in a fullscale commercial pig house containing animals [J]. Biosystems Engineering, 2012, 111(1): 91-106.
[13] 施珮, 袁永明, 匡亮, 等. 基于EMDIGASELM的池塘养殖水温预测方法[J]. 农业机械学报, 2018, 49(11): 312-319.
Shi Pei, Yuan Yongming, Kuang Liang, et al. Water temperature prediction in pond aquaculture based on EMDIGASELM neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 312-319.
[14] Kumar M, Garg D P, Zachery R A. A generalized approach for inconsistency detection in data fusion from multiple sensors [C]. American Control Conference. IEEE Xplore, 2006.
[15] Welch G F. Kalman filter [M]. Computer Vision. Cham: Springer International Publishing, 2021.
[16] Ullah I, Shen Y, Su X, et al. A localization based on unscented kalman filter and particle filter localization algorithms [J]. IEEE Access, 2020, 8: 2233-2246.
[17] Xia S, Nan X, Cai X, et al. Data fusion based wireless temperature monitoring system applied to intelligent greenhouse [J]. Computers and Electronics in Agriculture, 2022, 192: 106576.
[18] 仝运佳, 谢丽宇, 薛松涛, 等. 基于自适应无迹卡尔曼滤波算法的非线性系统估计[J]. 建筑结构学报, 2023, 44(1): 182-191, 224.Tong Yunjia, Xie Liyu, Xue Songtao, et al.Adaptive unscented Kalman filter for nonlinear structural identification [J]. Journal of Building Structures, 2023, 44(1): 182-191, 224.
[19] Wang X, You Z, Zhao K. Inertial/celestialbased fuzzy adaptive unscented Kalman filter with Covariance Intersection algorithm for satellite attitude determination [J]. Aerospace Science and Technology, 2016, 48: 214-222.
[20] 冯亦奇, 陈勇. 基于遗忘因子的UKF车辆状态参数估计算法[J]. 合肥工业大学学报(自然科学版), 2020, 43(11): 1450-1455, 1499.Feng Yiqi, Chen Yong.Unscented Kalman filter for vehicle state parameter estimation based on forgetting factor [J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(11): 1450-1455 1499.
[21] Gao Z, Mu D, Gao S, et al. Adaptive unscented Kalman filter based on maximum posterior and random weighting [J]. Aerospace Science and Technology, 2017, 71: 12-24.
[22] Huang G B, Wang D H, Lan Y. Extreme learning machines: A survey [J]. International Journal of Machine Learning and Cybernetics, 2011, 2: 107-122.
[23] 史加荣, 赵丹梦, 王琳华, 等. 基于RRVMDLSTM的短期风电功率预测[J]. 电力系统保护与控制, 2021, 49(21): 63-70.Shi Jiarong, Zhao Danmeng, Wang Linhua, et al. Shortterm wind power prediction based on RRVMDLSTM [J]. Power System Protection and Control, 2021, 49(21): 63-70.
[24] 王雨虹, 孙远星, 包伟川, 等. 基于数据均衡化与改进鲸鱼算法优化核极限学习机的变压器故障诊断方法[J]. 信息与控制, 2023, 52(2): 235-244, 256.Wang Yuhong, Sun Yuanxing, Bao Weichuan, et al. Transformer fault diagnosis method based on data equalization and kernelbased extreme learning machine of improved whale algorithm [J]. Information and Control, 2023, 52(2): 235-244, 256.
[25] Xue J, Shen B. Dung beetle optimizer: A new metaheuristic algorithm for global optimization [J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.
[26] Marini F, Walczak B. Particle swarm optimization (PSO). A tutorial [J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149: 153-165.
[27] Xue J, Shen B. A novel swarm intelligence optimization approach: Sparrow search algorithm [J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[28] Lakshmi V A, Mohanaiah P. WOATLBO: Whale optimization algorithm with teachinglearningbased optimization for global optimization and facial emotion recognition [J]. Applied Soft Computing, 2021, 110: 107623.
[29] 李永毅, 张剑妹, 连玮. 基于t分布变异的自适应黏菌优化算法[J]. 山西大同大学学报(自然科学版), 2022, 38(6): 40-44.
Li Yongyi, Zhang Jianmei, Lian Wei.Adaptive slime mould optimization algorithm based on tdistribution mutation [J]. Journal of Shanxi Datong University (Natural Science Edition), 2022, 38(6): 40-44.
[30] Tanyildizi E, Demir G. Golden sine algorithm: A novel mathinspired algorithm [J]. Advances in Electrical and Computer Engineering, 2017, 17(2): 71-78.
[31] 高晨峰, 陈家清, 石默涵. 融合黄金正弦和曲线自适应的多策略麻雀搜索算法[J]. 计算机应用研究, 2022, 39(2): 491-499.
Gao Chenfeng, Chen Jiaqing, Shi Mohan. Multistrategy sparrow search algorithm integrating golden sine and curve adaptive [J]. Application Research of Computers, 2022, 39(2): 491-499.
|